2618: [Cqoi2006]凸多边形

Time Limit: 5 Sec  Memory Limit: 128 MB
Submit: 656  Solved: 340
[Submit][Status][Discuss]

Description

逆时针给出n个凸多边形的顶点坐标,求它们交的面积。例如n=2时,两个凸多边形如下图:
 

则相交部分的面积为5.233。

Input

第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形。第i个多边形的第一行包含一个整数mi,表示多边形的边数,以下mi行每行两个整数,逆时针给出各个顶点的坐标。

Output

输出文件仅包含一个实数,表示相交部分的面积,保留三位小数。

Sample Input

2
6
-2 0
-1 -2
1 -2
2 0
1 2
-1 2
4
0 -3
1 -1
2 2
-1 0

Sample Output

5.233

HINT

100%的数据满足:2<=n<=10,3<=mi<=50,每维坐标为[-1000,1000]内的整数

Source

【思路】

  半平面交即若干个直线代表的半平面的重合部分。

【代码】

 #include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std; const int eps = 1e-; struct Pt {
double x,y;
Pt (double x=,double y=) :x(x),y(y) {}
};
typedef Pt vec; vec operator - (Pt a,Pt b) { return vec(a.x-b.x,a.y-b.y); }
vec operator + (vec a,vec b) { return vec(a.x+b.x,a.y+b.y); }
vec operator * (vec a,double x) { return vec(a.x*x,a.y*x); } double cross(Pt a,Pt b) { return a.x*b.y-a.y*b.x; } struct Line {
Pt p; vec v; double ang;
Line() {}
Line(Pt p,vec v) :p(p),v(v) { ang=atan2(v.y,v.x); }
bool operator < (const Line& rhs) const {
return ang < rhs.ang;
}
};
bool onleft(Line L,Pt p) { return cross(L.v,p-L.p)>; }
Pt getLineInter(Line a,Line b) {
vec u=a.p-b.p;
double t=cross(b.v,u)/cross(a.v,b.v);
return a.p+a.v*t;
}
vector<Pt> HPI(vector<Line> L) {
int n=L.size();
sort(L.begin(),L.end());
int f,r;
vector<Pt> p(n) , ans;
vector<Line> q(n);
q[f=r=]=L[];
for(int i=;i<n;i++) {
while(f<r && !onleft(L[i],p[r-])) r--;
while(f<r && !onleft(L[i],p[f])) f++;
q[++r]=L[i];
if(fabs(cross(q[r].v,q[r-].v))<eps) {
r--;
if(onleft(q[r],L[i].p)) q[r]=L[i];
}
if(f<r) p[r-]=getLineInter(q[r-],q[r]);
}
while(f<r && !onleft(q[f],p[r-])) r--;
if(r-f<=) return ans;
p[r]=getLineInter(q[r],q[f]);
for(int i=f;i<=r;i++) ans.push_back(p[i]);
return ans;
}
vector<Line> L;
vector<Pt> p;
Pt t[];
int n,m; int main() {
scanf("%d",&n);
for(int i=;i<n;i++) {
scanf("%d",&m);
for(int i=;i<m;i++)
scanf("%lf%lf",&t[i].x,&t[i].y);
for(int i=;i<m;i++)
L.push_back(Line(t[i-],t[i]-t[i-]));
L.push_back(Line(t[m-],t[]-t[m-]));
}
p = HPI(L);
double ans=0.0; int m=p.size();
for(int i=;i<m-;i++)
ans += cross(p[i]-p[],p[i+]-p[]);
printf("%.3lf",ans/);
return ;
}

bzoj 2618 2618: [Cqoi2006]凸多边形(半平面交)的更多相关文章

  1. bzoj 2618: [Cqoi2006]凸多边形 [半平面交]

    2618: [Cqoi2006]凸多边形 半平面交 注意一开始多边形边界不要太大... #include <iostream> #include <cstdio> #inclu ...

  2. 洛谷 P4196 [CQOI2006]凸多边形 (半平面交)

    题目链接:P4196 [CQOI2006]凸多边形 题意 给定 \(n\) 个凸多边形,求它们相交的面积. 思路 半平面交 半平面交的模板题. 代码 #include <bits/stdc++. ...

  3. BZOJ - 2618 凸多边形 (半平面交)

    题意:求n个凸多边形的交面积. 半平面交模板题. #include<bits/stdc++.h> using namespace std; typedef long long ll; ty ...

  4. 【BZOJ 2618】 2618: [Cqoi2006]凸多边形 (半平面交)

    2618: [Cqoi2006]凸多边形 Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. Input 第一 ...

  5. 2018.07.04 BZOJ 2618 Cqoi2006凸多边形(半平面交)

    2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec Memory Limit: 128 MB Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n ...

  6. bzoj 2618 半平面交模板+学习笔记

    题目大意 给你n个凸多边形,求多边形的交的面积 分析 题意\(=\)给你一堆边,让你求半平面交的面积 做法 半平面交模板 1.定义半平面为向量的左侧 2.将所有向量的起点放到一个中心,以中心参照进行逆 ...

  7. bzoj 2618【半平面交模板】

    #include<iostream> #include<cstdio> #include<algorithm> #include<cmath> usin ...

  8. 【BZOJ2618】[CQOI2006]凸多边形(半平面交)

    [BZOJ2618][CQOI2006]凸多边形(半平面交) 题面 BZOJ 洛谷 题解 这个东西就是要求凸多边形的边所形成的半平面交. 那么就是一个半平面交模板题了. 这里写的是平方的做法. #in ...

  9. [CQOI2006]凸多边形(半平面交)

    很明显是一道半平面交的题. 先说一下半平面交的步骤: 1.用点向法(点+向量)表示直线 2.极角排序,若极角相同,按相对位置排序. 3.去重,极角相同的保留更优的 4.枚举边维护双端队列 5.求答案 ...

随机推荐

  1. SVN资料库转移-----dump和load

    最近由于大批量的更换服务器,所以之前布署的SVN服务器需要重新布署,需要把原来的资源库转移到新服务器上,并且使管理的项目版本一致,在网上查了一下SVN版本库迁移,但看了一上google出来的也很少,所 ...

  2. 利用Linux系统生成随机密码的10种方法

    Linux操作系统的一大优点是对于同样一件事情,你可以使用高达数百种方法来实现它.例如,你可以通过数十种方法来生成随机密码.本文将介绍生成随机密码的十种方法. 1. 使用SHA算法来加密日期,并输出结 ...

  3. 网站开发常用jQuery插件总结(15)上传插件blueimp

    在介绍这个插件之前,先吐槽一下.这个插件功能很强大.带有的功能有:上传(单个文件或批量文件),自动上传或点击按钮上传,上传前缩略图显示,判断文件格式,上传前的文件操作,上传时进度条显示等功能.如果你用 ...

  4. ci 用本身 email 类发 email

    //比如 在控制器用 email 方法发送邮件 //用126的smtp 发送,示例邮件为 myemail@126.com 密码为 password public function email() { ...

  5. 基于u-boot源码的简单shell软件实现

    一.概述 1.shell概念 Shell(命令解析器),它用于接收用户输入的命令,进行解析,然后调用相应的应用程序,为使用者提供了使用软件的界面. shell是操作系统最外面的一层.shell管理你与 ...

  6. JAVA NIO之Character Set

    明白以下几个概念: 字母集(Character Set),汉字,特殊符号,字母这些都是字符集: 字符编码集(Coded character set),将字符集的字符使用数字进行编码:比如ASCII,就 ...

  7. The CircuitCalculator.com Blog a blog with live web calculators Home About Policies Contact PCB

    PCB Trace Width Calculator 转载自:CircuitCalculator.com 关键词: PCB,Layout,电流,导线宽度. This Javascript web ca ...

  8. HTML5+CSS3鼠标悬停图片特效

    点击预览效果            下载该特效: HTML5+CSS3鼠标悬停图片特效.zip 特效说明: 一款HTML5+CSS3鼠标悬停图片事件网页特效,集合了最流行鼠标悬停图片文字.图片动画移动 ...

  9. django入门教程(下)

    在两篇文章帮你入门Django(上)一文中,我们已经做了一个简单的小网站,实现了保存用户数据到数据库,以及从后台数据库读取数据显示到网页上这两个功能. 看上去没有什么问题了,不过我们可以让它变得更加完 ...

  10. [BZOJ 3531] [Sdoi2014] 旅行 【离线+LCT】

    题目链接:BZOJ - 3531 题目分析 题目询问一条路径上的信息时,每次询问有某种特定的文化的点. 每个点的文化就相当于一种颜色,每次询问一条路径上某种颜色的点的信息. 可以使用离线算法, 类似于 ...