[LOJ#2255][BZOJ5017][Snoi2017]炸弹

试题描述

在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足: 
Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被引爆。 
现在,请你帮忙计算一下,先把第 i 个炸弹引爆,将引爆多少个炸弹呢? 

输入

第一行,一个数字 N,表示炸弹个数。 
第 2∼N+1行,每行 2 个数字,表示 Xi,Ri,保证 Xi 严格递增。 
N≤500000
−10^18≤Xi≤10^18
0≤Ri≤2×10^18

输出

一个数字,表示Sigma(i*炸弹i能引爆的炸弹个数),1<=i<=N mod10^9+7。

输入示例


输出示例


数据规模及约定

见“输入

题解

显然一个炸弹能引爆的范围一定是一段连续的区间,于是我们就考虑求它的左右端点。

考虑一种容易漏掉的情况:一个炸弹 a 引爆左边一个炸弹 b,b 引爆 a 右侧的 c,c 引爆 b 左侧的 d……这种情况我们不难发现从 a 到 d,炸弹的爆炸半径一定倍增(比如若 b 的半径小于 a 半径的两倍,由于 b 可以引爆 a 右边的 c,所以 a 可以直接引爆 c,不需要借助 b)。

剩下的情况就是连锁爆炸(即爆炸只往一个方向传递),处理这个东西我们只需要用单调栈正反扫一遍处理出每个炸弹向左向右连锁爆炸能炸到的最远的炸弹就可以了(不妨设向左向右最远的炸弹编号分别为 lft[i] 和 rgt[i])。

最后我们用 RMQ 维护一下 lft[i] 的最小值,rgt[i] 的最大值;若要求炸弹 i 的范围,就是不停扩张的过程,最多扩张 log(n) 次。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define LL long long const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
LL read() {
LL x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 500010
#define maxlog 19
#define MOD 1000000007 int n, q[maxn], top, lft[maxn], rgt[maxn];
LL X[maxn], R[maxn]; int Log[maxn], mn[maxlog][maxn], mx[maxlog][maxn];
void init() {
for(int i = 1; i <= n; i++) mn[0][i] = lft[i], mx[0][i] = rgt[i];
for(int j = 1; (1 << j) <= n; j++)
for(int i = 1; i + (1 << j) - 1 <= n; i++)
mn[j][i] = min(mn[j-1][i], mn[j-1][i+(1<<j-1)]),
mx[j][i] = max(mx[j-1][i], mx[j-1][i+(1<<j-1)]);
return ;
}
int _l, _r;
void query(int ql, int qr) {
int t = Log[qr-ql+1];
_l = min(mn[t][ql], mn[t][qr-(1<<t)+1]);
_r = max(mx[t][ql], mx[t][qr-(1<<t)+1]);
return ;
} int main() {
n = read();
for(int i = 1; i <= n; i++) X[i] = read(), R[i] = read(); Log[1] = 0;
for(int i = 2; i <= n; i++) Log[i] = Log[i>>1] + 1; lft[1] = 1;
q[top = 1] = 1;
for(int i = 2; i <= n; i++) {
int l = 1, r = top;
while(l < r) {
int mid = l + r >> 1;
if(X[q[mid]] < X[i] - R[i]) l = mid + 1; else r = mid;
}
if(X[q[l]] < X[i] - R[i]) lft[i] = i;
else lft[i] = lft[q[l]];
while(top && lft[i] <= lft[q[top]]) top--;
q[++top] = i;
}
rgt[n] = n;
q[top = 1] = n;
for(int i = n - 1; i; i--) {
int l = 1, r = top;
while(l < r) {
int mid = l + r >> 1;
if(X[q[mid]] > X[i] + R[i]) l = mid + 1; else r = mid;
}
// printf("%d: %d | %d %lld\n", i, l, q[l], X[q[l]]);
if(X[q[l]] > X[i] + R[i]) rgt[i] = i;
else rgt[i] = rgt[q[l]];
while(top && rgt[i] >= rgt[q[top]]) top--;
q[++top] = i;
}
// for(int i = 1; i <= n; i++) printf("LR [%d %d]\n", lft[i], rgt[i]);
init();
int ans = 0;
for(int i = 1; i <= n; i++) {
int l = lft[i], r = rgt[i];
_l = n + 1; _r = 0;
for(;;) {
query(l, r);
if(l == _l && r == _r) break;
l = _l; r = _r;
}
ans += ((LL)i * (r - l + 1)) % MOD;
if(ans >= MOD) ans -= MOD;
// printf("[%d, %d]\n", l, r);
} printf("%d\n", ans); return 0;
}

[LOJ#2255][BZOJ5017][Snoi2017]炸弹的更多相关文章

  1. loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点

    loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...

  2. loj #2255. 「SNOI2017」炸弹

    #2255. 「SNOI2017」炸弹 题目描述 在一条直线上有 NNN 个炸弹,每个炸弹的坐标是 XiX_iX​i​​,爆炸半径是 RiR_iR​i​​,当一个炸弹爆炸时,如果另一个炸弹所在位置 X ...

  3. [bzoj5017][Snoi2017]炸弹 tarjan缩点+线段树优化建图+拓扑

    5017: [Snoi2017]炸弹 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 608  Solved: 190[Submit][Status][ ...

  4. BZOJ5017 Snoi2017炸弹(线段树+强连通分量+缩点+传递闭包)

    容易想到每个炸弹向其能引爆的炸弹连边,tarjan缩点后bitset传递闭包.进一步发现每个炸弹能直接引爆的炸弹是一段连续区间,于是线段树优化建图即可让边的数量降至O(nlogn).再冷静一下由于能间 ...

  5. BZOJ5017 [Snoi2017]炸弹[线段树优化建边+scc缩点+DAG上DP/线性递推]

    方法一: 朴素思路:果断建图,每次二分出一个区间然后要向这个区间每个点连有向边,然后一个环的话是可以互相引爆的,缩点之后就是一个DAG,求每个点出发有多少可达点. 然后注意两个问题: 上述建边显然$n ...

  6. bzoj千题计划311:bzoj5017: [Snoi2017]炸弹(线段树优化tarjan构图)

    https://www.lydsy.com/JudgeOnline/problem.php?id=5017 暴力: 对于每一个炸弹,枚举所有的炸弹,看它爆炸能不能引爆那个炸弹 如果能,由这个炸弹向引爆 ...

  7. BZOJ5017 [SNOI2017]炸弹 - 线段树优化建图+Tarjan

    Solution 一个点向一个区间内的所有点连边, 可以用线段树优化建图来优化 : 前置技能传送门 然后就得到一个有向图, 一个联通块内的炸弹可以互相引爆, 所以进行缩点变成$DAG$ 然后拓扑排序. ...

  8. bzoj5017: [Snoi2017]炸弹

    Description 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足:  Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被 ...

  9. bzoj5017 [Snoi2017]炸弹 (线段树优化建图+)tarjan 缩点+拓扑排序

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5017 题解 这个题目方法挺多的. 线段树优化建图 线段树优化建图的做法应该挺显然的,一个炸弹能 ...

随机推荐

  1. Windows UEFI 安装策略的一个细节

    在计算机已连接任何带Windows Boot Manager的硬盘的时候,系统自己不会创建EFI分区,而是用之前的

  2. C#链接mysql 新手容易出错的问题

    1.Access denied for user 'root'@'DESKTOP-AN72KEI' (using password: YES) 出现这个问题的原因是因为mysql的自带用户root理论 ...

  3. Problem X: C语言习题 学生成绩输入和输出

    Problem X: C语言习题 学生成绩输入和输出 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 4722  Solved: 2284[Submit] ...

  4. spring aop切面中获取代理bean的名字以及bean

    //切面中搞: Map<String , Object> map = (Map)ApplicationContextHelper.getBean(proceedingJoinPoint.g ...

  5. sort 与 sorted 区别:

    sort 与 sorted 区别: sort 是应用在 list 上的方法,sorted 可以对所有可迭代的对象进行排序操作. list 的 sort 方法返回的是对已经存在的列表进行操作,无返回值, ...

  6. PAT (Basic Level) Practise (中文)-1019. 数字黑洞 (20)

    http://www.patest.cn/contests/pat-b-practise/1019 给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第 ...

  7. 音频框架TheAmazingAudioEngine实现音效

    TheAmazingAudioEngine是Michael Tyson开源的iOS第三方音频框架.很多音频类APP应用这个框架作开发. 应用这个框架,可以比较方便地实现iOS音频开发中的各种音效的实现 ...

  8. VS2013连接SQL Server 2008 R2测试

    第一步,打开SQL Server 08,这里要说明一下,一定要开启服务,很多时候我们重启电脑以后,SQL Server的保留进程会被类似电脑管家之类的保护程序关闭,于是乎连接了半天的数据库都连不上. ...

  9. Service Mesh是什么技术

    https://blog.csdn.net/weixin_38044696/article/details/80257488 Service Mesh是什么技术 2018年05月09日 22:07:4 ...

  10. paper:synthesizable finit state machine design techniques using the new systemverilog 3.0 enhancements之enhanced coding styles

    1.ANSI style 的代码比较紧凑. 下面规范推荐,比较好. 下面是带有parameter的module header的完整规范 一般1bit ,大家都是wire signal1 = gen_s ...