[LOJ#2255][BZOJ5017][Snoi2017]炸弹

试题描述

在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足: 
Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被引爆。 
现在,请你帮忙计算一下,先把第 i 个炸弹引爆,将引爆多少个炸弹呢? 

输入

第一行,一个数字 N,表示炸弹个数。 
第 2∼N+1行,每行 2 个数字,表示 Xi,Ri,保证 Xi 严格递增。 
N≤500000
−10^18≤Xi≤10^18
0≤Ri≤2×10^18

输出

一个数字,表示Sigma(i*炸弹i能引爆的炸弹个数),1<=i<=N mod10^9+7。

输入示例


输出示例


数据规模及约定

见“输入

题解

显然一个炸弹能引爆的范围一定是一段连续的区间,于是我们就考虑求它的左右端点。

考虑一种容易漏掉的情况:一个炸弹 a 引爆左边一个炸弹 b,b 引爆 a 右侧的 c,c 引爆 b 左侧的 d……这种情况我们不难发现从 a 到 d,炸弹的爆炸半径一定倍增(比如若 b 的半径小于 a 半径的两倍,由于 b 可以引爆 a 右边的 c,所以 a 可以直接引爆 c,不需要借助 b)。

剩下的情况就是连锁爆炸(即爆炸只往一个方向传递),处理这个东西我们只需要用单调栈正反扫一遍处理出每个炸弹向左向右连锁爆炸能炸到的最远的炸弹就可以了(不妨设向左向右最远的炸弹编号分别为 lft[i] 和 rgt[i])。

最后我们用 RMQ 维护一下 lft[i] 的最小值,rgt[i] 的最大值;若要求炸弹 i 的范围,就是不停扩张的过程,最多扩张 log(n) 次。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define LL long long const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
LL read() {
LL x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 500010
#define maxlog 19
#define MOD 1000000007 int n, q[maxn], top, lft[maxn], rgt[maxn];
LL X[maxn], R[maxn]; int Log[maxn], mn[maxlog][maxn], mx[maxlog][maxn];
void init() {
for(int i = 1; i <= n; i++) mn[0][i] = lft[i], mx[0][i] = rgt[i];
for(int j = 1; (1 << j) <= n; j++)
for(int i = 1; i + (1 << j) - 1 <= n; i++)
mn[j][i] = min(mn[j-1][i], mn[j-1][i+(1<<j-1)]),
mx[j][i] = max(mx[j-1][i], mx[j-1][i+(1<<j-1)]);
return ;
}
int _l, _r;
void query(int ql, int qr) {
int t = Log[qr-ql+1];
_l = min(mn[t][ql], mn[t][qr-(1<<t)+1]);
_r = max(mx[t][ql], mx[t][qr-(1<<t)+1]);
return ;
} int main() {
n = read();
for(int i = 1; i <= n; i++) X[i] = read(), R[i] = read(); Log[1] = 0;
for(int i = 2; i <= n; i++) Log[i] = Log[i>>1] + 1; lft[1] = 1;
q[top = 1] = 1;
for(int i = 2; i <= n; i++) {
int l = 1, r = top;
while(l < r) {
int mid = l + r >> 1;
if(X[q[mid]] < X[i] - R[i]) l = mid + 1; else r = mid;
}
if(X[q[l]] < X[i] - R[i]) lft[i] = i;
else lft[i] = lft[q[l]];
while(top && lft[i] <= lft[q[top]]) top--;
q[++top] = i;
}
rgt[n] = n;
q[top = 1] = n;
for(int i = n - 1; i; i--) {
int l = 1, r = top;
while(l < r) {
int mid = l + r >> 1;
if(X[q[mid]] > X[i] + R[i]) l = mid + 1; else r = mid;
}
// printf("%d: %d | %d %lld\n", i, l, q[l], X[q[l]]);
if(X[q[l]] > X[i] + R[i]) rgt[i] = i;
else rgt[i] = rgt[q[l]];
while(top && rgt[i] >= rgt[q[top]]) top--;
q[++top] = i;
}
// for(int i = 1; i <= n; i++) printf("LR [%d %d]\n", lft[i], rgt[i]);
init();
int ans = 0;
for(int i = 1; i <= n; i++) {
int l = lft[i], r = rgt[i];
_l = n + 1; _r = 0;
for(;;) {
query(l, r);
if(l == _l && r == _r) break;
l = _l; r = _r;
}
ans += ((LL)i * (r - l + 1)) % MOD;
if(ans >= MOD) ans -= MOD;
// printf("[%d, %d]\n", l, r);
} printf("%d\n", ans); return 0;
}

[LOJ#2255][BZOJ5017][Snoi2017]炸弹的更多相关文章

  1. loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点

    loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...

  2. loj #2255. 「SNOI2017」炸弹

    #2255. 「SNOI2017」炸弹 题目描述 在一条直线上有 NNN 个炸弹,每个炸弹的坐标是 XiX_iX​i​​,爆炸半径是 RiR_iR​i​​,当一个炸弹爆炸时,如果另一个炸弹所在位置 X ...

  3. [bzoj5017][Snoi2017]炸弹 tarjan缩点+线段树优化建图+拓扑

    5017: [Snoi2017]炸弹 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 608  Solved: 190[Submit][Status][ ...

  4. BZOJ5017 Snoi2017炸弹(线段树+强连通分量+缩点+传递闭包)

    容易想到每个炸弹向其能引爆的炸弹连边,tarjan缩点后bitset传递闭包.进一步发现每个炸弹能直接引爆的炸弹是一段连续区间,于是线段树优化建图即可让边的数量降至O(nlogn).再冷静一下由于能间 ...

  5. BZOJ5017 [Snoi2017]炸弹[线段树优化建边+scc缩点+DAG上DP/线性递推]

    方法一: 朴素思路:果断建图,每次二分出一个区间然后要向这个区间每个点连有向边,然后一个环的话是可以互相引爆的,缩点之后就是一个DAG,求每个点出发有多少可达点. 然后注意两个问题: 上述建边显然$n ...

  6. bzoj千题计划311:bzoj5017: [Snoi2017]炸弹(线段树优化tarjan构图)

    https://www.lydsy.com/JudgeOnline/problem.php?id=5017 暴力: 对于每一个炸弹,枚举所有的炸弹,看它爆炸能不能引爆那个炸弹 如果能,由这个炸弹向引爆 ...

  7. BZOJ5017 [SNOI2017]炸弹 - 线段树优化建图+Tarjan

    Solution 一个点向一个区间内的所有点连边, 可以用线段树优化建图来优化 : 前置技能传送门 然后就得到一个有向图, 一个联通块内的炸弹可以互相引爆, 所以进行缩点变成$DAG$ 然后拓扑排序. ...

  8. bzoj5017: [Snoi2017]炸弹

    Description 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足:  Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被 ...

  9. bzoj5017 [Snoi2017]炸弹 (线段树优化建图+)tarjan 缩点+拓扑排序

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5017 题解 这个题目方法挺多的. 线段树优化建图 线段树优化建图的做法应该挺显然的,一个炸弹能 ...

随机推荐

  1. FiraCode 字体 => 箭头函数变成 整体 还有 等于 不等于

    https://github.com/tonsky/FiraCode Enable in Settings → Editor → Color Scheme → Color Scheme Font →  ...

  2. Java执行系统命令工具类(JDK自带功能)

    CommandUtil.java package utils; import java.io.ByteArrayOutputStream; import java.io.IOException; im ...

  3. java static block

    java 中 静态块的作用 (一)java 静态代码块 静态方法区别一般情况下,如果有些代码必须在项目启动的时候就执行的时候,需要使用静态代码块,这种代码是主动执行的;需要在项目启动的时候就初始化,在 ...

  4. 队列的add与offer的区别

    两个方法都表示往队列里添加元素 但是当出现异常时,add方法抛出异常 而offer则返回的是false,就是啥事也没有,也不抛异常,也没有添加成功!

  5. JavaScript深入浅出第2课:函数是一等公民是什么意思呢?

    摘要: 听起来很炫酷的一等公民是啥? <JavaScript深入浅出>系列: JavaScript深入浅出第1课:箭头函数中的this究竟是什么鬼? JavaScript深入浅出第2课:函 ...

  6. iOS--UIScrollView基本用法和代理方法

    主要是为了记录下UIScrollView的代理方法吧 在帮信息学院的学长做东西的时候需要大量用到分块浏览,所以就涉及到很多的关于scrollview,所以也就有了这篇文章   - (void)view ...

  7. stack与heap、new的内存分配、static对象。(effective c++ 04)

    阅读effective c++ 04 (30页) 提到的static对象和堆与栈对象."不同编译单元内定义的non-local static对象". 了解一下.    目录 sta ...

  8. kubernetes安装rabbitmq集群

    1.准备K8S环境 2.下载基础镜像,需要安装两种插件:autocluster.rabbitmq_management 方法一: 下载已有插件镜像 [root@localhost ~]#docker ...

  9. Python学习笔记:PyInstaller(exe程序打包)

    PyInstaller可以将Python程序打包成一个exe程序来独立运行,用户使用时只需要执行这个exe文件即可,不需要在机器上再安装Python及其他包就可运行了.另外,PyInstaller相较 ...

  10. Altium Designer入门学习笔记1.软件安装与资料收集

    一.软件安装 微信:http://url.cn/5Eudzt9 关注微信公众号"软件安装管家",点击"软件目录",弹出"软件目录",点击进入 ...