jzptab

【问题描述】

求:

多组询问

【输入格式】

一个正整数T表示数据组数

接下来T行 每行两个正整数 表示N、M

【输出格式】

T行 每行一个整数 表示第i组数据的结果

【样例输入】

1
4 5

【样例输出】

122

【数据范围】

T <= 10000
N, M<=10000000


题解:

即后面那个部分为 H[T],H[T]是积性函数,求详细证明的话将T和d展开为质因数次幂相乘的形式,考虑线性筛中枚举的质数与被筛数的性质即可

 #include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn = 1e7 + ;
const int mod = 1e8 + ;
int cnt;
int h[maxn];
int pri[maxn];
int sum[maxn];
bool vis[maxn];
inline void Scan(int &x)
{
char c;
bool o = false;
while(!isdigit(c = getchar())) o = (c != '-') ? o : true;
x = c - '';
while(isdigit(c = getchar())) x = x * + c - '';
if(o) x = -x;
}
inline void Sieve()
{
h[] = ;
for(int i = ; i <= maxn; ++i)
{
if(!vis[i]) pri[++cnt] = i, h[i] = ((-(long long) i * i % mod) + mod + i) % mod;
for(int j = ; j <= cnt; ++j)
{
int s = pri[j];
long long k = (long long) i * s;
if(k > maxn) break;
vis[k] = true;
if(!(i % s))
{
h[k] = (long long) s * h[i] % mod;
break;
}
else h[k] = (long long) h[s] * h[i] % mod;
}
}
for(int i = ; i <= maxn; ++i) sum[i] = (sum[i - ] + h[i]) % mod;
}
inline int Sum(int n, int m)
{
return ((long long) n * (n + ) >> ) % mod * (((long long) m * (m + ) >> ) % mod) % mod;
}
inline int Mobius(int n, int m)
{
int res = , last = ;
if(n > m) swap(n, m);
for(int i = ; i <= n; i = last + )
{
last = min(n / (n / i), m / (m / i));
res = (res + (long long) Sum(n / i, m / i) * ((sum[last] - sum[i - ] + mod) % mod) % mod) % mod;
}
return res;
}
int main()
{
Sieve();
int n;
Scan(n);
int a, b;
while(n--)
{
Scan(a), Scan(b);
printf("%d\n", Mobius(a, b));
}
}

Crash的数字表格 BZOJ 2154 / jzptab BZOJ 2693的更多相关文章

  1. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

  2. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  3. 【BZOJ】【2154】Crash的数字表格

    莫比乌斯反演 PoPoQQQ讲义第4题 题解:http://www.cnblogs.com/jianglangcaijin/archive/2013/11/27/3446169.html 感觉两次sq ...

  4. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  5. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  6. 【BZOJ 2154】Crash的数字表格 (莫比乌斯+分块)

    2154: Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能 ...

  7. Bzoj 2154: Crash的数字表格(积性函数)

    2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MB Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least ...

  8. 2154: Crash的数字表格

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 3372  Solved: 1258[Submit][Status][ ...

  9. 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告

    [国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...

随机推荐

  1. iOS 绘制1像素的线

    一.Point Vs Pixel iOS中当我们使用Quartz,UIKit,CoreAnimation等框架时,所有的坐标系统采用Point来衡量.系统在实际渲染到设置时会帮助我们处理Point到P ...

  2. gradle更换国内镜像、配置本地仓库地址

    gradle更换国内镜像,安装包解压后init.d文件夹下面创建init.gradle文件,内容如下 allprojects{ repositories { def REPOSITORY_URL = ...

  3. Spring框架配置文件中有两个相同名字的bean,最后会覆盖掉一个bean

    问题容易出现在多个人合作的项目中,定义bean的名字的时候发生重复. 可以配置当bean定义重复的时候抛出异常,结束程序,强制提示更改重复的bean.

  4. python之序列化

    什么叫序列化? 序列化是指把内存里的数据类型转变成字符串,以使其能存储到硬盘或通过网络传输到远程,因为硬盘或网络传输时只能接受bytes. 把字符转换成内存数据类型,叫反序列化. 为什么要序列化? 你 ...

  5. i2c_drivers个人分析

    \arch\arm\mach-mx6\board-mx6q_sabresd.c static struct i2c_board_info i2c_board_info_rtc[] __initdata ...

  6. scanf(),gets(),getchar()

    scanf()与gets()区别: scanf( )函数和gets( )函数都可用于输入字符串,但在功能上有区别.若想从键盘上输入字符串"hi hello",则应该使用gets() ...

  7. selenium2用AutoIt上传文件

    1.标签是input,如下图所示: WebElement e1= driver.findElement(By.id("load"));//输入要上传文件的地址e1.sendKeys ...

  8. 大家好,我是一个JAVA初学者,想在这里记下自己学习过程中的点点滴滴,请多多关照

    大家好,我是一个JAVA初学者,想在这里记下自己学习JAVA的点点滴滴,请多多关照. 以前一直在QQ空间里记录的,但感觉有些麻烦,而且有些东西自己理解的并不完善甚至都不正确,现在开始在这里重新记录,从 ...

  9. HDU 5379 树形DP Mahjong tree

    任意一棵子树上节点的编号连续,每个节点的所有二字节点连续,求编号方案的总数. 稍微分析一下可知 每个节点的非叶子节点个数不能多于两个,否则这个子树无解,从而整棵树都无解. 每棵子树将所有节点按照编号从 ...

  10. 【Netty】NIO框架Netty入门

    Netty介绍 Netty是由JBOSS提供的一个java开源框架.Netty提供异步的.事件驱动的网络应用程序框架和工具,用以快速开发高性能.高可靠性的网络服务器和客户端程序. 也就是说,Netty ...