GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5310    Accepted Submission(s): 1907

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

 
Source
 
题目大意:求在1<=x<=b,1<=y<=d上gcd(x,y)=k的(x,y)对数
 /************容斥原理*************/
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; typedef __int64 LL;
const int maxn=1e5+;
int phi[maxn],prime[maxn],factor[],num;
bool flag[maxn];
void swap(int &a,int &b){ int t=a;a=b;b=t;} void init()//欧拉筛选
{
memset(flag,true,sizeof(flag));
phi[]=;
for(int i=;i<maxn;i++)
{
if(flag[i])
{
prime[num++]=i;
phi[i]=i-;
}
for(int j=;j<num&&i*prime[j]<maxn;j++)
{
flag[i*prime[j]]=false;
if(i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
} void getfactor(int n,int &len)//质因数分解
{
int t=sqrt(n*1.0);len=;
for(int i=;i<num&&prime[i]<=t;i++)
{
if(n%prime[i]==)
{
factor[len++]=prime[i];
while(n%prime[i]==) n/=prime[i];
}
}
if(n>) factor[len++]=n;
} int getans(int a,int b)
{
int n;
int ans=;
getfactor(b,n);
for(int i=;i<(<<n);i++)//容斥原理
{
int cnt=,temp=;
for(int j=;j<n;j++)
{
if(i&(<<j))
{
cnt++;temp*=factor[j];
}
}
if(cnt&) ans+=a/temp;
else ans-=a/temp;
}
return a-ans;
} int main()
{
int i,a,b,c,d,k,t,icase=;
LL ans;num=;
init();
scanf("%d",&t);
while(t--)
{
scanf("%d %d %d %d %d",&a,&b,&c,&d,&k);
if(k==||k>b||k>d)
{
printf("Case %d: 0\n",++icase);
continue;
}
ans=;
b/=k;d/=k;
if(b>d) swap(b,d);
for(i=;i<=b;i++) ans+=phi[i];
for(i=b+;i<=d;i++) ans+=getans(b,i);
printf("Case %d: %I64d\n",++icase,ans);
}
return ;
}
/*************莫比乌斯反演****************/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; typedef __int64 LL;
const int maxn=1e5+;
int prime[maxn],mu[maxn],num;
bool flag[maxn]; void init()
{
memset(flag,true,sizeof(flag));
mu[]=;
for(int i=;i<maxn;i++)
{
if(flag[i])
{
prime[num++]=i;mu[i]=-;
}
for(int j=;j<num&&i*prime[j]<maxn;j++)
{
flag[i*prime[j]]=false;
if(i%prime[j]==)
{
mu[i*prime[j]]=;
break;
}
else mu[i*prime[j]]=-mu[i];
}
}
} int main()
{
num=;
init();
int i,a,b,c,d,k,t,icase=;
scanf("%d",&t);
while(t--)
{
scanf("%d %d %d %d %d",&a,&b,&c,&d,&k);
if(k==||k>b||k>d)
{
printf("Case %d: 0\n",++icase);
continue;
}
b=b/k;d=d/k;
if(b>d) swap(b,d);
LL ans=,ans1=;
for(i=;i<=b;i++)
ans+=(LL)mu[i]*(b/i)*(d/i);
for(i=;i<=b;i++)
ans1+=(LL)mu[i]*(b/i)*(b/i);
ans-=ans1/;
printf("Case %d: %I64d\n",++icase,ans);
}
return ;
}

hdu 1695 容斥原理或莫比乌斯反演的更多相关文章

  1. HDU 1695 GCD (莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. HDU 1695 GCD (莫比乌斯反演模板)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  3. hdu 1695: GCD 【莫比乌斯反演】

    题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就 ...

  4. hdu 1695 GCD(莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. HDU 5321 Beautiful Set (莫比乌斯反演 + 逆元 + 组合数学)

    题意:给定一个 n 个数的集合,然后让你求两个值, 1.是将这个集合的数进行全排列后的每个区间的gcd之和. 2.是求这个集合的所有的子集的gcd乘以子集大小的和. 析:对于先求出len,len[i] ...

  6. 【容斥原理,莫比乌斯反演】用容斥替代莫比乌斯反演第二种形式解决gcd统计问题

    名字虽然很长.但是其实很简单,对于这一类问题基本上就是看你能不能把统计的公式搞出来(这时候需要一个会推公式的队友) 来源于某次cf的一道题,盼望上紫的我让潘学姐帮我代打一道题,她看了看跟我说了题解,用 ...

  7. HDU 4746 Mophues【莫比乌斯反演】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4746 题意: 1≤x,y≤n , 求gcd(x,y)分解后质因数个数小于等k的(x,y)的对数. 分 ...

  8. HDU 5468 Puzzled Elena 莫比乌斯反演

    题意: 给出一棵树,每个点上有权值.然后求每棵子树中与根节点互质( \(gcd(a, b) = 1\) )的节点个数. 分析: 对于一颗子树来说,设根节点的权值为\(u\), \(count_i\)表 ...

  9. GCD HDU - 1695 容斥原理(复杂度低的版本)

    题意: 让你从区间[a,b]里面找一个数x,在区间[c,d]里面找一个数y.题目上已经设定a=b=1了.问你能找到多少对GCD(x,y)=k.x=5,y=7和y=5,x=7是同一对 题解: 弄了半天才 ...

随机推荐

  1. c#List结合IEqualityComparer求交集

    List元素类: public class MultiPointSearchingRet { public int ID { get; set; } public string PlateNumber ...

  2. Linux运维笔记--第二部

    第2部-重要目录结构详解 1.回顾Linux目录结构知识 /dev/            设备目录 /etc/             系统配置及服务配置文件,启动命令的目录 /proc       ...

  3. MFC 菜单编程 -- 总结

    菜单结构 一个菜单栏可以有若干个子菜单,而一个子菜单又可有若干个菜单项.对于菜单栏的子菜单,由左至右从0开始索引.对于特定的子菜单的菜单项,由上至下建立从0开始的索引.访问子菜单和菜单项,均可通过其索 ...

  4. mysql数据库使用mybatis 插入数据时返回主键

    为了体现题目,特指的是mysql,先贴上代码: <insert id="saveBizProdOrderDetail" useGeneratedKeys="true ...

  5. LeetCode(278)First Bad Version

    题目 You are a product manager and currently leading a team to develop a new product. Unfortunately, t ...

  6. 【HIHOCODER 1599】逃离迷宫4

    描述 小Hi被坏女巫抓进一座由无限多个格子组成的矩阵迷宫. 小Hi一开始处于迷宫(x, y)的位置,迷宫的出口在(a, b).小Hi发现迷宫被女巫施加了魔法,假设当前他处在(x, y)的位置,那么他只 ...

  7. Linux学习-循环执行的例行性工作排程

    循环执行的例行性工作排程则是由 cron (crond) 这个系统服务来控制的.Linux 系统上面原本就有非常多的例行性工作,因此这个系统服务是默认启动的. 另外, 由于使用者自己也可以进行例行性工 ...

  8. 对java多线程的一些浅浅的理解

    作为一名JAVA初学者,前几天刚刚接触多线程这个东西,有了些微微的理解想写下来(不对的地方请多多包涵并指教哈). 多线程怎么写代码就不说了,一搜一大堆.说说多线程我认为最难搞的地方,就是来回释放锁以及 ...

  9. UVa 1354 枚举子集 Mobile Computing

    只要枚举左右两个子天平砝码的集合,我们就能算出左右两个悬挂点到根悬挂点的距离. 但是题中要求找尽量宽的天平但是不能超过房间的宽度,想不到要怎样记录结果. 参考别人代码,用了一个结构体的vector,保 ...

  10. 老男孩全栈python学习进程表

     老男孩Python高级全栈开发工程师-1  0001.开学典礼_ALEX简介  00:55:53 ☆  0002.职业生涯_来培训的目的  01:12:29 ☆  0003.课程目标  00:29: ...