GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5310    Accepted Submission(s): 1907

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

 
Source
 
题目大意:求在1<=x<=b,1<=y<=d上gcd(x,y)=k的(x,y)对数
 /************容斥原理*************/
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; typedef __int64 LL;
const int maxn=1e5+;
int phi[maxn],prime[maxn],factor[],num;
bool flag[maxn];
void swap(int &a,int &b){ int t=a;a=b;b=t;} void init()//欧拉筛选
{
memset(flag,true,sizeof(flag));
phi[]=;
for(int i=;i<maxn;i++)
{
if(flag[i])
{
prime[num++]=i;
phi[i]=i-;
}
for(int j=;j<num&&i*prime[j]<maxn;j++)
{
flag[i*prime[j]]=false;
if(i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
} void getfactor(int n,int &len)//质因数分解
{
int t=sqrt(n*1.0);len=;
for(int i=;i<num&&prime[i]<=t;i++)
{
if(n%prime[i]==)
{
factor[len++]=prime[i];
while(n%prime[i]==) n/=prime[i];
}
}
if(n>) factor[len++]=n;
} int getans(int a,int b)
{
int n;
int ans=;
getfactor(b,n);
for(int i=;i<(<<n);i++)//容斥原理
{
int cnt=,temp=;
for(int j=;j<n;j++)
{
if(i&(<<j))
{
cnt++;temp*=factor[j];
}
}
if(cnt&) ans+=a/temp;
else ans-=a/temp;
}
return a-ans;
} int main()
{
int i,a,b,c,d,k,t,icase=;
LL ans;num=;
init();
scanf("%d",&t);
while(t--)
{
scanf("%d %d %d %d %d",&a,&b,&c,&d,&k);
if(k==||k>b||k>d)
{
printf("Case %d: 0\n",++icase);
continue;
}
ans=;
b/=k;d/=k;
if(b>d) swap(b,d);
for(i=;i<=b;i++) ans+=phi[i];
for(i=b+;i<=d;i++) ans+=getans(b,i);
printf("Case %d: %I64d\n",++icase,ans);
}
return ;
}
/*************莫比乌斯反演****************/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; typedef __int64 LL;
const int maxn=1e5+;
int prime[maxn],mu[maxn],num;
bool flag[maxn]; void init()
{
memset(flag,true,sizeof(flag));
mu[]=;
for(int i=;i<maxn;i++)
{
if(flag[i])
{
prime[num++]=i;mu[i]=-;
}
for(int j=;j<num&&i*prime[j]<maxn;j++)
{
flag[i*prime[j]]=false;
if(i%prime[j]==)
{
mu[i*prime[j]]=;
break;
}
else mu[i*prime[j]]=-mu[i];
}
}
} int main()
{
num=;
init();
int i,a,b,c,d,k,t,icase=;
scanf("%d",&t);
while(t--)
{
scanf("%d %d %d %d %d",&a,&b,&c,&d,&k);
if(k==||k>b||k>d)
{
printf("Case %d: 0\n",++icase);
continue;
}
b=b/k;d=d/k;
if(b>d) swap(b,d);
LL ans=,ans1=;
for(i=;i<=b;i++)
ans+=(LL)mu[i]*(b/i)*(d/i);
for(i=;i<=b;i++)
ans1+=(LL)mu[i]*(b/i)*(b/i);
ans-=ans1/;
printf("Case %d: %I64d\n",++icase,ans);
}
return ;
}

hdu 1695 容斥原理或莫比乌斯反演的更多相关文章

  1. HDU 1695 GCD (莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. HDU 1695 GCD (莫比乌斯反演模板)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  3. hdu 1695: GCD 【莫比乌斯反演】

    题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就 ...

  4. hdu 1695 GCD(莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. HDU 5321 Beautiful Set (莫比乌斯反演 + 逆元 + 组合数学)

    题意:给定一个 n 个数的集合,然后让你求两个值, 1.是将这个集合的数进行全排列后的每个区间的gcd之和. 2.是求这个集合的所有的子集的gcd乘以子集大小的和. 析:对于先求出len,len[i] ...

  6. 【容斥原理,莫比乌斯反演】用容斥替代莫比乌斯反演第二种形式解决gcd统计问题

    名字虽然很长.但是其实很简单,对于这一类问题基本上就是看你能不能把统计的公式搞出来(这时候需要一个会推公式的队友) 来源于某次cf的一道题,盼望上紫的我让潘学姐帮我代打一道题,她看了看跟我说了题解,用 ...

  7. HDU 4746 Mophues【莫比乌斯反演】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4746 题意: 1≤x,y≤n , 求gcd(x,y)分解后质因数个数小于等k的(x,y)的对数. 分 ...

  8. HDU 5468 Puzzled Elena 莫比乌斯反演

    题意: 给出一棵树,每个点上有权值.然后求每棵子树中与根节点互质( \(gcd(a, b) = 1\) )的节点个数. 分析: 对于一颗子树来说,设根节点的权值为\(u\), \(count_i\)表 ...

  9. GCD HDU - 1695 容斥原理(复杂度低的版本)

    题意: 让你从区间[a,b]里面找一个数x,在区间[c,d]里面找一个数y.题目上已经设定a=b=1了.问你能找到多少对GCD(x,y)=k.x=5,y=7和y=5,x=7是同一对 题解: 弄了半天才 ...

随机推荐

  1. modelformset

    class StudyRecordDeialView(View): def get(self, request, class_record_id): class_record_obj = models ...

  2. java,求1-100之和。

    package study01; public class TestWhile { public static void main(String[] args) { int sum = 0; int ...

  3. Map集合应用 取出一个字符串中字母出现的次数。如:字符串:"abcdekka27qoq" ,输出格式为:a(2)b(1)k(2)...

    package com.swift; import java.util.HashMap; import java.util.Iterator; import java.util.Map; import ...

  4. 微信iOS多设备多字体适配方案总结

    一.背景 2014下半年,微信iOS版先后适配iPad, iPhone6/6plus.随着这些大屏设备的登场,部分用户觉得微信的字体太小,但也有很多用户不喜欢太大的字体.为了满足不同用户的需求,我们做 ...

  5. 【点分治】luoguP2664 树上游戏

    应该是一道中等难度的点分?麻烦在一些细节. 题目描述 lrb有一棵树,树的每个节点有个颜色.给一个长度为n的颜色序列,定义s(i,j) 为i 到j 的颜色数量.以及 现在他想让你求出所有的sum[i] ...

  6. 【主席树】bzoj1112: [POI2008]砖块Klo

    数据结构划一下水 Description N柱砖,希望有连续K柱的高度是一样的. 你可以选择以下两个动作 1:从某柱砖的顶端拿一块砖出来,丢掉不要了. 2:从仓库中拿出一块砖,放到另一柱.仓库无限大. ...

  7. 初涉斯坦纳树&&bzoj4774: 修路

    斯坦纳树的基础应用 斯坦纳树有什么用 个人一点粗浅理解…… 最基本形式的斯坦纳树问题(以下简称母问题):给定图G和一个关键点集V.求在G中选取一个权值最小(这里权值可以有很多变式)的边集E使V中的点两 ...

  8. 【转】centos中service命令与/etc/init.d的关系以及centos7的变化

    centos中service命令与/etc/init.d的关系 service httpd start 其实是启动了存放在/etc/init.d目录下的脚本. 但是centos7的服务管理改规则了.C ...

  9. PHP 代码优化建议

    1.尽量静态化: 如果一个方法能被静态,那就声明它为静态的,速度可提高1/4,甚至我测试的时候,这个提高了近三倍.当然了,这个测试方法需要在十万级以上次执行,效果才明显.其实静态方法和非静态方法的效率 ...

  10. Linux磁盘分区介绍

    分区?我们不是已经在BIOS界面分区好了吗?如果领导给你一块磁盘,你怎么用呢?所以就有了分区工具(fdisk和parted),fdisk工具只针对小于2T磁盘分区,且是交互式的:parted很强大,通 ...