常用网站:

NetworkX官方介绍:

========

NetworkX (NX) is a Python package for the creation, manipulation, and
study of the structure, dynamics, and functions of complex networks. <https://networkx.lanl.gov/>
    Just write in Python

    >>> import networkx as nx
>>> G=nx.Graph()
>>> G.add_edge(1,2)
>>> G.add_node(42)
>>> print(sorted(G.nodes()))
[1, 2, 42]
>>> print(sorted(G.edges()))
[(1, 2)]
  • 用来处理无向图、有向图、多重图的Python数据结构
  • 包含许多标准的图算法
  • 包括网络结构和分析方法
  • 用于产生经典图、随机图和综合网络
  • 节点可以是任何事物(如text, images, XML records)
  • 边能保存任意起算值(如weights, time-series)
  • 开源证书 BSD license
  • 很好的测试结果:超过1800个单元测试,90%的结点覆盖
  • 从Python获得的额外优势:快速原型开发方法,容易学,支持多平台。
import networkx as nx
G = nx.Graph()
G.add_edge('A', 'B', weight=4)
G.add_edge('B', 'D', weight=2)
G.add_edge('A', 'C', weight=3)
G.add_edge('C', 'D', weight=4)
nx.shortest_path(G, 'A', 'D', weight='weight')
['A', 'B', 'D']
import networkx as nx
G=nx.Graph()
G.add_edge(1,2)
G.add_node(42)
print(sorted(G.nodes()))
print(sorted(G.edges()))
[1, 2, 42]
[(1, 2)]

创建图

import networkx as nx
G=nx.Graph()
  • Graph是结点(向量)与确定的结点对(称作边、链接等)的集合。

    在Networkx中,结点可以是任何可哈希的对象,如文本字符串、图片、XML对象、其他图,自定义对象等。

    注意:python的None对象不应该用作结点,

可哈希的:一个对象在它的生存期从来不会被改变(拥有一个哈希方法),能和其他对象区别(有比较方法)

结点

Neatworkx包含很多图生成器函数和工具,可用来以多种格式来读写图。

一次增加一个节点:

G.add_node(1)

用序列增加一系列的节点

G.add_nodes_from([2,3])

增加 nbunch结点。

nbunch是可迭代的结点容器 (序列、集合、图、文件等),其本身不是图的某个节点

import networkx as nx
G=nx.Graph()
G.add_node(1)
G.add_nodes_from([2,3])
H=nx.path_graph(10) # type(H) networkx.classes.graph.Graph,H 是一个有 10 个节点的链状图,即有 n 个节点 n-1 条边的连通图
G.add_nodes_from(H) # 这是将 H 中的许多结点作为 G 的节点
G.add_node(H) # 这是将H作为G中的一个节点
#查看结点
G.node
{1: {},
2: {},
3: {},
0: {},
4: {},
5: {},
6: {},
7: {},
8: {},
9: {},
<networkx.classes.graph.Graph at 0x18ecbb89940>: {}}
#G能够一次增加一条边
G.add_edge(1,2) #只能增加边,有属性,除非指定属性名和值“属性名=值”
e=(2,3)
G.add_edge(*e) #注意! G.add_edge(e)会报错!G.add_edge(e)
#用序列增加一系列结点
G.add_edges_from([(1,2),(1,3)])
#增加 ebunch边。ebunch:包含边元组的容器,比如序列、迭代器、文件等
#这个元组可以是2维元组或 三维元组 (node1,node2,an_edge_attribute_dictionary),an_edge_attribute_dictionary比如:
#{‘weight’:3.1415}
G.add_edges_from(H.edges())

删除

G.remove_node(),G.remove_nodes_from()
G.remove_edge(),G.remove_edges_from()
G.remove_node(H) #删除不存在的东西会报错
#移除所有的节点和边
G.clear()
G.add_edges_from([(1,2),(1,3)])
G.add_node(1)
G.add_edge(1,2)
G.add_node("spam")
G.add_nodes_from("spam") # adds 4 nodes: 's', 'p', 'a', 'm'
G.edges(),G.nodes(),G.number_of_edges(),G.number_of_nodes()
import networkx as nx
<module 'networkx' from 'D:\\ProgramData\\Anaconda3\\lib\\site-packages\\networkx\\__init__.py'>

无向图

import networkx as nx
import matplotlib.pyplot as plt G = nx.Graph() #建立一个空的无向图G
G.add_node(1) #添加一个节点1
G.add_edge(2,3) #添加一条边2-3(隐含着添加了两个节点2、3)
G.add_edge(3,2) #对于无向图,边3-2与边2-3被认为是一条边
print ("nodes:", G.nodes()) #输出全部的节点: [1, 2, 3]
print ("edges:", G.edges()) #输出全部的边:[(2, 3)]
print ("number of edges:", G.number_of_edges()) #输出边的数量:1
nx.draw(G)
plt.savefig("wuxiangtu.png")
plt.show()
nodes: [1, 2, 3]
edges: [(2, 3)]
number of edges: 1

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt
G = nx.DiGraph()
G.add_node(1)
G.add_node(2) #加点
G.add_nodes_from([3,4,5,6]) #加点集合
G.add_cycle([1,2,3,4]) #加环
G.add_edge(1,3)
G.add_edges_from([(3,5),(3,6),(6,7)]) #加边集合
nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()

有向图

#!-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt G = nx.DiGraph()
G.add_node(1)
G.add_node(2)
G.add_nodes_from([3,4,5,6])
G.add_cycle([1,2,3,4])
G.add_edge(1,3)
G.add_edges_from([(3,5),(3,6),(6,7)])
nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()

注:有向图和无向图可以互相转换,使用函数:

  • Graph.to_undirected()
  • Graph.to_directed()
# 例子中把有向图转化为无向图
import networkx as nx
import matplotlib.pyplot as plt G = nx.DiGraph()
G.add_node(1)
G.add_node(2)
G.add_nodes_from([3,4,5,6])
G.add_cycle([1,2,3,4])
G.add_edge(1,3)
G.add_edges_from([(3,5),(3,6),(6,7)])
G = G.to_undirected()
nx.draw(G)
plt.savefig("wuxiangtu.png")
plt.show()

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt G = nx.DiGraph() road_nodes = {'a': 1, 'b': 2, 'c': 3}
#road_nodes = {'a':{1:1}, 'b':{2:2}, 'c':{3:3}}
road_edges = [('a', 'b'), ('b', 'c')] G.add_nodes_from(road_nodes.items())
G.add_edges_from(road_edges) nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt G = nx.DiGraph() #road_nodes = {'a': 1, 'b': 2, 'c': 3}
road_nodes = {'a':{1:1}, 'b':{2:2}, 'c':{3:3}}
road_edges = [('a', 'b'), ('b', 'c')] G.add_nodes_from(road_nodes.items())
G.add_edges_from(road_edges) nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()

加权图

有向图和无向图都可以给边赋予权重,用到的方法是add_weighted_edges_from,它接受1个或多个三元组[u,v,w]作为参数,

其中u是起点,v是终点,w是权重

#!-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt
G = nx.Graph() #建立一个空的无向图G
G.add_edge(2,3) #添加一条边2-3(隐含着添加了两个节点2、3)
G.add_weighted_edges_from([(3, 4, 3.5),(3, 5, 7.0)]) #对于无向图,边3-2与边2-3被认为是一条边 print (G.get_edge_data(2, 3))
print (G.get_edge_data(3, 4))
print (G.get_edge_data(3, 5)) nx.draw(G)
plt.savefig("wuxiangtu.png")
plt.show()
{}
{'weight': 3.5}
{'weight': 7.0}

import networkx as nx
import matplotlib.pyplot as plt
G = nx.DiGraph()

经典图论算法计算

计算1:求无向图的任意两点间的最短路径

# -*- coding: cp936 -*-
import networkx as nx
import matplotlib.pyplot as plt #计算1:求无向图的任意两点间的最短路径
G = nx.Graph()
G.add_edges_from([(1,2),(1,3),(1,4),(1,5),(4,5),(4,6),(5,6)])
path = nx.all_pairs_shortest_path(G)
print(path[1])
{1: [1], 2: [1, 2], 3: [1, 3], 4: [1, 4], 5: [1, 5], 6: [1, 4, 6]}

计算2:找图中两个点的最短路径

import networkx as nx
G=nx.Graph()
G.add_nodes_from([1,2,3,4])
G.add_edge(1,2)
G.add_edge(3,4)
try:
n=nx.shortest_path_length(G,1,4)
print (n)
except nx.NetworkXNoPath:
print ('No path')
No path

强连通、弱连通

  • 强连通:有向图中任意两点v1、v2间存在v1到v2的路径(path)及v2到v1的路径。
  • 弱联通:将有向图的所有的有向边替换为无向边,所得到的图称为原图的基图。如果一个有向图的基图是连通图,则有向图是弱连通图。

距离

例1:弱连通

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt
#G = nx.path_graph(4, create_using=nx.Graph())
#0 1 2 3
G = nx.path_graph(4, create_using=nx.DiGraph()) #默认生成节点0 1 2 3,生成有向变0->1,1->2,2->3
G.add_path([7, 8, 3]) #生成有向边:7->8->3 for c in nx.weakly_connected_components(G):
print (c) print ([len(c) for c in sorted(nx.weakly_connected_components(G), key=len, reverse=True)]) nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()
{0, 1, 2, 3, 7, 8}
[6]

例2:强连通

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt
#G = nx.path_graph(4, create_using=nx.Graph())
#0 1 2 3
G = nx.path_graph(4, create_using=nx.DiGraph())
G.add_path([3, 8, 1]) #for c in nx.strongly_connected_components(G):
# print c
#
#print [len(c) for c in sorted(nx.strongly_connected_components(G), key=len, reverse=True)] con = nx.strongly_connected_components(G)
print (con)
print (type(con))
print (list(con)) nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()
<generator object strongly_connected_components at 0x0000018ECC82DD58>
<class 'generator'>
[{8, 1, 2, 3}, {0}]

子图

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt
G = nx.DiGraph()
G.add_path([5, 6, 7, 8])
sub_graph = G.subgraph([5, 6, 8])
#sub_graph = G.subgraph((5, 6, 8)) #ok 一样 nx.draw(sub_graph)
plt.savefig("youxiangtu.png")
plt.show()

条件过滤

原图

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt
G = nx.DiGraph() road_nodes = {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}, 'd':{'id':4}}
road_edges = [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'd')] G.add_nodes_from(road_nodes)
G.add_edges_from(road_edges) nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()

过滤函数

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt
G = nx.DiGraph()
def flt_func_draw():
flt_func = lambda d: d['id'] != 1
return flt_func road_nodes = {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}, 'd':{'id':4}}
road_edges = [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'd')] G.add_nodes_from(road_nodes.items())
G.add_edges_from(road_edges) flt_func = flt_func_draw()
part_G = G.subgraph(n for n, d in G.nodes_iter(data=True) if flt_func(d))
nx.draw(part_G)
plt.savefig("youxiangtu.png")
plt.show()

pred,succ

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt
G = nx.DiGraph() road_nodes = {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}}
road_edges = [('a', 'b'), ('a', 'c'), ('c', 'd')] G.add_nodes_from(road_nodes.items())
G.add_edges_from(road_edges) print( G.nodes())
print (G.edges()) print ("a's pred ", G.pred['a'])
print ("b's pred ", G.pred['b'])
print ("c's pred ", G.pred['c'])
print ("d's pred ", G.pred['d']) print ("a's succ ", G.succ['a'])
print ("b's succ ", G.succ['b'])
print ("c's succ ", G.succ['c'])
print ("d's succ ", G.succ['d']) nx.draw(G)
plt.savefig("wuxiangtu.png")
plt.draw()
['a', 'b', 'c', 'd']
[('a', 'b'), ('a', 'c'), ('c', 'd')]
a's pred {}
b's pred {'a': {}}
c's pred {'a': {}}
d's pred {'c': {}}
a's succ {'b': {}, 'c': {}}
b's succ {}
c's succ {'d': {}}
d's succ {}

画图小技巧

%pylab inline
mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号 '-' 显示为方块的问题 import networkx as nx
g=nx.Graph()
g.add_edge('张三','李四')
g.add_edge('张三','王五')
nx.draw(g,with_labels=True)
plt.show()
Populating the interactive namespace from numpy and matplotlib

networkx 有四种图 Graph 、DiGraph、MultiGraph、MultiDiGraph,分别为无多重边无向图、无多重边有向图、有多重边无向图、有多重边有向图。

import networkx as nx

G = nx.Graph()  # 创建空的网络图
G = nx.DiGraph()
G = nx.MultiGraph()
G = nx.MultiDiGraph() G.add_node('a')#添加点a
G.add_node(1,1)#用坐标来添加点
G.add_edge('x','y')#添加边,起点为x,终点为y
G.add_weight_edges_from([('x','y',1.0)])#第三个输入量为权值
#也可以
L = [[('a','b',5.0),('b','c',3.0),('a','c',1.0)]]
G.add_weight_edges_from([(L)])
nx.draw(G)
plt.show() # 图像显示

为了让图形更精美我们详解 nx.draw()

nx.draw(G, pos=None, ax=None, **kwds)

  • pos 指的是布局,主要有 spring_layout , random_layoutcircle_layoutshell_layout
  • node_color 指节点颜色,有 rbykw ,同理 edge_color.
  • with_labels 指节点是否显示名字
  • size 表示大小
  • font_color 表示字的颜色。
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt G = nx.Graph()
G.add_edges_from(
[('A', 'B'), ('A', 'C'), ('D', 'B'), ('E', 'C'), ('E', 'F'),
('B', 'H'), ('B', 'G'), ('B', 'F'), ('C', 'G')]) val_map = {'A': 1.0,
'D': 0.5714285714285714,
'H': 0.0} values = [val_map.get(node, 0.25) for node in G.nodes()] nx.draw(G, cmap = plt.get_cmap('jet'), node_color = values)
plt.show()

import networkx as nx
import matplotlib.pyplot as plt G = nx.DiGraph()
G.add_edges_from(
[('A', 'B'), ('A', 'C'), ('D', 'B'), ('E', 'C'), ('E', 'F'),
('B', 'H'), ('B', 'G'), ('B', 'F'), ('C', 'G')]) val_map = {'A': 1.0,
'D': 0.5714285714285714,
'H': 0.0} values = [val_map.get(node, 0.25) for node in G.nodes()] # Specify the edges you want here
red_edges = [('A', 'C'), ('E', 'C')]
edge_colours = ['black' if not edge in red_edges else 'red'
for edge in G.edges()]
black_edges = [edge for edge in G.edges() if edge not in red_edges] # Need to create a layout when doing
# separate calls to draw nodes and edges
pos = nx.spring_layout(G)
nx.draw_networkx_nodes(G, pos, cmap=plt.get_cmap('jet'),
node_color = values, node_size = 500)
nx.draw_networkx_labels(G, pos)
nx.draw_networkx_edges(G, pos, edgelist=red_edges, edge_color='r', arrows=True)
nx.draw_networkx_edges(G, pos, edgelist=black_edges, arrows=False)
plt.show()

import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import pylab G = nx.DiGraph() G.add_edges_from([('A', 'B'),('C','D'),('G','D')], weight=1)
G.add_edges_from([('D','A'),('D','E'),('B','D'),('D','E')], weight=2)
G.add_edges_from([('B','C'),('E','F')], weight=3)
G.add_edges_from([('C','F')], weight=4) val_map = {'A': 1.0,
'D': 0.5714285714285714,
'H': 0.0} values = [val_map.get(node, 0.45) for node in G.nodes()]
edge_labels=dict([((u,v,),d['weight'])
for u,v,d in G.edges(data=True)])
red_edges = [('C','D'),('D','A')]
edge_colors = ['black' if not edge in red_edges else 'red' for edge in G.edges()] pos=nx.spring_layout(G)
nx.draw_networkx_edge_labels(G,pos,edge_labels=edge_labels)
nx.draw(G,pos, node_color = values, node_size=1500,edge_color=edge_colors,edge_cmap=plt.cm.Reds)
pylab.show()

NetworkX的更多相关文章

  1. 路径分析之NetworkX实例

    #!/usr/bin/env python # -*- coding: utf-8 -*- import networkx as nx import numpy as np import json i ...

  2. 网络分析之networkx(转载)

    图的类型 Graph类是无向图的基类,无向图能有自己的属性或参数,不包含重边,允许有回路,节点可以是任何hash的python对象,节点和边可以保存key/value属性对.该类的构造函数为Graph ...

  3. python复杂网络分析库NetworkX

    NetworkX是一个用Python语言开发的图论与复杂网络建模工具,内置了常用的图与复杂网络分析算法,可以方便的进行复杂网络数据分析.仿真建模等工作.networkx支持创建简单无向图.有向图和多重 ...

  4. python下的复杂网络编程包networkx的安装及使用

    由于py3.x与工具包的兼容问题,这里采用py2.7 1.python下的复杂网络编程包networkx的使用: http://blog.sina.com.cn/s/blog_720448d30101 ...

  5. python网络画图——networkX

    networkX tutorial 绘制基本网络图 用matplotlib绘制网络图 基本流程: 1. 导入networkx,matplotlib包 2. 建立网络 3. 绘制网络 nx.draw() ...

  6. 社区发现算法问题&&NetworkX&&Gephi

    在做东西的时候用到了社区发现,因此了解了一下有关社区发现的一些问题 1,社区发现算法 (1)SCAN:一种基于密度的社团发现算法 Paper: <SCAN: A Structural Clust ...

  7. NetworkX学习笔记-5-NetworkX中怎样对多个网络赋属性,并根据属性排序

    这是我在数据分析过程中遇到的实际问题,简单记录一下.这里以DiGraph为例,其他类型的网络(图)的处理方法是一样的. 按照这里:http://networkx.github.io/documenta ...

  8. 【转】介绍几个图论和复杂网络的程序库 —— BGL,QuickGraph,igraph和NetworkX

    原文来自:http://blog.sciencenet.cn/blog-404069-297233.html 作复杂网络研究离不开对各种实际或模拟网络的统计.计算.绘图等工作.对于一般性的工作,我们可 ...

  9. Social Network Analysis的Centrality总结,以及networkx实现EigenCentrality,PageRank和KatzCentrality的对比

    本文主要总结近期学习的Social Network Analysis(SNA)中的各种Centrality度量,我暂且翻译为中心度.本文主要是实战,理论方面几乎没有,因为对于庞大的SNA,我可能连门都 ...

  10. networkx 学习

    import networkx as nx import pylab import numpy as np #自定义网络 row=np.array([,,,,,,]) col=np.array([,, ...

随机推荐

  1. C++ vector 使用笔记

    map 插入 vector #include <string> #include <iostream> #include <algorithm> #include ...

  2. 一步一步详解ID3和C4.5的C++实现

    1. 关于ID3和C4.5的原理介绍这里不赘述,网上到处都是,可以下载讲义c9641_c001.pdf或者参考李航的<统计学习方法>. 2. 数据与数据处理 本文采用下面的训练数据: 数据 ...

  3. python3之协程

    1.协程的概念 协程,又称微线程,纤程.英文名Coroutine. 线程是系统级别的它们由操作系统调度,而协程则是程序级别的由程序根据需要自己调度.在一个线程中会有很多函数,我们把这些函数称为子程序, ...

  4. python实战===教你用微信每天给女朋友说晚安

    但凡一件事,稍微有些重复.我就考虑怎么样用程序来实现它. 这里给各位程序员朋友分享如何每天给朋友定时微信发送”晚安“,故事,新闻,等等··· ···最好运行在服务器上,这样后台挂起来更方便. 准备: ...

  5. mysql系列一、mysql数据库规范

    一. 表设计 库名.表名.字段名必须使用小写字母,“_”分割. 库名.表名.字段名必须不超过12个字符. 库名.表名.字段名见名知意,建议使用名词而不是动词. 表必须使用InnoDB存储引擎. 表必须 ...

  6. FreeSWITCH与PSTN对接

    FreeSWITCH与PSTN电话系统对接设定 一.环境介绍 我们目前使用模拟的话机连接到电信运营商,购买他们配套的电话总机,勉强实现了公司的基本通话.但是客户电话总机系统以及升级添加新的应用不但费用 ...

  7. DDMS调试工具

    ADT给我们提供了一个非常方便的调试工具,那就是DDMS.使用这个工具,代码调试工作也变得简单起来.我们只需要单击Eclipse界面右上方的DDMS按钮就可以切换到DDMS界面了,如图2-31所示. ...

  8. Redis五大数据类型以及操作

    目录: 一.redis的两种链接方式 二.redis的字符串操作(string) 三.redis的列表操作(list) 四.redis的散列表操作(类似于字典里面嵌套字典) 五.redis的集合操作( ...

  9. python + selenium 模块封装及参数化

    模块封装 示例代码: baidu.py from time import sleep from selenium import webdriver driver = webdriver.Chrome( ...

  10. MySQL5.6 GTID Replication

    MySQL 5.6 的新特性之一,是加入了全局事务 ID (Global Transaction ID) 来强化数据库的主备一致性,故障恢复,以及容错能力.官方文档:http://dev.mysql. ...