ubuntu18+gtx1060 +cuda9+cudnn-v7+opencv3.1.0 配置深度学习环境
将笔记本的ubuntu系统更新到18版本后重新配置深度学习环境,在此记载方便日后参考
具体配置为 Ubuntu18.04+gtx1060+opencv-3.1
第1步 安装依赖包
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
sudo apt-get install git cmake build-essential
要确保这些依赖包都成功安装,不然后续出错让人忧伤
第2步 禁用nouveau
禁用nouveau后才能顺利安装NVIDIA显卡驱动
先通过命令打开配置文件
sudo gedit /etc/modprobe.d/blacklist-nouveau.conf
然后写入
blacklist nouveau option nouveau modeset=0
保存文件后关闭,更新后才能生效
sudo update-initramfs -u
第3步 配置环境变量
打开配置文件
sudo gedit ~/.bashrc
写入
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
保存后退出
第4步 安装测试cuda(默认已安装好显卡驱动)
官网 https://developer.nvidia.com/cuda-downloads
下载后缀为.run 的文件
执行如下命令安装
sudo sh cuda_9.0.176_384.81_linux.run
回车键可加速翻页
其中出现如下选项,不知是否会出错,有点忧伤
You are attempting to install on an unsupported configuration. Do you wish to continue?
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 384.81?
(y)es/(n)o/(q)uit: no
这一选项要选择no
然后进行测试
cd /usr/local/cuda/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery
出现如下信息则安装成功
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 9.1, CUDA Runtime Version = 9.0, NumDevs = 1
Result = PASS
配置环境变量
sudo gedit /etc/profile ###修改计算机环境
或者
sudo gedit ~/.bashrc ###修改用户环境
写入
export PATH=/usr/local/cuda-9.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64$LD_LIBRARY_PATH
重启电脑
sudo reboot ###修改计算机环境后
source ~/.bashrc ###修改用户环境后
第5步 安装cudnn
官网:https://developer.nvidia.com/rdp/cudnn-download 下载cuda对应版本的cudnn
本人下载的是cudnn-9.1-linux-x64-v7.tgz
百度网盘链接链接: https://pan.baidu.com/s/1rPEoJEzAmg-3g6juZSSmmA 密码: vpx6
解压后得到cuda文件夹
cd include && sudo cp cudnn.h /usr/local/cuda/include/ #复制头文件
cd .. && cd lib64
sudo cp lib* /usr/local/cuda/lib64/ #复制动态链接库
cd /usr/local/cuda/lib64/
sudo rm -rf libcudnn.so libcudnn.so.7 #删除原有动态文件
sudo ln -s libcudnn.so.7.0.5 libcudnn.so.7 #生成软衔接
sudo ln -s libcudnn.so.7 libcudnn.so #生成软链接
然后将路径添加到动态库
sudo gedit /etc/ld.so.conf.d/cuda.conf
写入
/usr/local/cuda/lib64
保存后更新
sudo ldconfig
安装完成后可用 nvcc -V 命令验证是否安装成功,若出现以下信息则表示安装成功:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176
第6步 安装opencv3.1
官网 : http://opencv.org/releases.html
下载合适版本,解压后进入opencv目录
mkdir build && cd build # 创建编译的文件目录
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
make -j8 #编译
sudo make install
安装完成后通过查看 opencv 版本验证是否安装成功:
pkg-config --modversion opencv
卸载opencv的方法
进入 opencv/build 目录下
sudo make uninstall
然后
sudo rm -r /usr/local/include/opencv2 /usr/local/include/opencv /usr/include/opencv /usr/include/opencv2 /usr/local/share/opencv /usr/local/share/OpenCV /usr/share/opencv /usr/share/OpenCV /usr/local/bin/opencv* /usr/local/lib/libopencv
第7步安装tensorflow
pip install --index-url https://pypi.douban.com/simple tensorflow-gpu==1.8.0
第8步 安装pyTorch
先安装好 Anaconda
百度网盘
链接:https://pan.baidu.com/s/1TKmzVy8yY00RbCESCP2AHA 密码:hfjv
环境变量设置
sudo gedit ~/.bashrc
$ export PATH=/home/ye/anaconda3/bin:$PATH
给conda增加源
# 优先使用清华conda镜像
conda config --prepend channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
# 也可选用科大conda镜像
conda config --prepend channels http://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
cat ~/.condarc #查看文件内容有无国内源信息,若有,则成功
安装 pytorch==0.4.0,torchvision
conda install pytorch==0.4.0 #cpu版本,可以根据需求改为gpu版本
conda install torchvision
测试,若
import torch
无报错,则成功
ubuntu18+gtx1060 +cuda9+cudnn-v7+opencv3.1.0 配置深度学习环境的更多相关文章
- Windows10 + eclipse + JDK1.8 + Apache Maven 3.6.0 + dl4j深度学习环境配置
Windows10 + eclipse + JDK1.8 + Apache Maven 3.6.0 + dl4j深度学习环境配置 JDK下载安装请自行,并设置好环境变量1 查看Java版本C:\Use ...
- Ubuntu16.04 + CUDA9.0 + cuDNN7.3 + Tensorflow-gpu-1.12 + Jupyter Notebook 深度学习环境配置
目录 一.Ubuntu16.04 LTS系统的安装 二.设置软件源的国内镜像 1. 设置方法 2.关于ubuntu镜像的小知识 三.Nvidia显卡驱动的安装 1. 首先查看显卡型号和推荐的显卡驱动 ...
- win10+VS2015+opencv3.4.0配置方法
win10+VS2015+opencv3.4.0配置方法 操作环境: windows10 64位opencv 3.4.0:https://opencv.org/releases.html(选择open ...
- 深度学习环境搭建:Tensorflow1.4.0+Ubuntu16.04+Python3.5+Cuda8.0+Cudnn6.0
目录 深度学习环境搭建:Tensorflow1.4.0+Ubuntu16.04+Python3.5+Cuda8.0+Cudnn6.0 Reference 硬件说明: 软件准备: 1. 安装Ubuntu ...
- 深度学习环境配置Ubuntu16.04+CUDA8.0+CUDNN5
深度学习从12年开始打响,配置深度学习环境软件一直是一个头疼的问题,如何安装显卡驱动,如何安装CUDA,如何安装CUDNN:Ubuntu官方一直吐槽Nvidia显卡驱动有问题,网上大神也给出了关闭li ...
- win7下VS2015+opencv3.1.0配置
由于opencv与vs的适配版本不同,本人在官网下载opencv3.1.0,其可以和VS2013.VS2015适配,文中以VS2015为例 opencv2.4.13-----vc11;vc12 ope ...
- 保姆级教程——Ubuntu16.04 Server下深度学习环境搭建:安装CUDA8.0,cuDNN6.0,Bazel0.5.4,源码编译安装TensorFlow1.4.0(GPU版)
写在前面 本文叙述了在Ubuntu16.04 Server下安装CUDA8.0,cuDNN6.0以及源码编译安装TensorFlow1.4.0(GPU版)的亲身经历,包括遇到的问题及解决办法,也有一些 ...
- 搭建实用深度学习环境(Ubuntu16.10+Theano0.8.2+Tensorflow0.11.0rc1+Keras1.1.0)
在动手安装之前,首先要确定硬件,系统,准备安装软件的版本,确定这些软硬件之间是否相互支持或兼容.本文安装的主要环境和软件如下: Ubuntu16.10+CUDA8.0(cudnn5.1,CNMEM)+ ...
- Ubuntu18.04下配置深度学习开发环境
在Ubuntu18.04下配置深度学习/机器学习开发环境 1.下载并安装Anaconda 下载地址:https://www.anaconda.com/distribution/#linux 安装步骤: ...
随机推荐
- ora-904 rowid create materialized view
create materialized view t_v asselect t1.*,1 as marker,rowid from t1 t1union allselect t2.*,2 as mar ...
- Angular 父子组件传值
Angular 父子组件传值 @Input @Output @ViewChild 新建一个头部组件 newsheader 在主组件引用 news 组件,在news组件添加 newsheader 组 ...
- nginx按日期分割日志
#!/bin/bash # Program:chenglee # Auto cut nginx log script. LOGS_PATH="/usr/local/nginx1.13/log ...
- [c/c++] programming之路(11)、顺序分支
一.模块化设计 #include<stdio.h> #include<stdlib.h> #include<windows.h> void openbaidu(){ ...
- Codeforces 825E Minimal Labels - 拓扑排序 - 贪心
You are given a directed acyclic graph with n vertices and m edges. There are no self-loops or multi ...
- 01 Hello World!
from tkinter import Label#获取组件对象 widget=Label(None,text='Hello GUI world!')#生成 widget.pack()#布置 widg ...
- Cmder + Babun 打造 Windows 好用的终端工具
Babun a windows shell you will love Babun features the following: Pre-configured Cygwin with a lot o ...
- linux内核中的两个标记GFP_KERNEL和GFP_ATOMIC是用来干什么的?
1. 作用 用来标记分配内核空间内存时的方式 2. 两个标记使用在什么场合? 如果内存不够时,会等待内核释放内存,直到可以分配相应大小的内存,也就意味着会发生阻塞,因此不能使用在中断处理函数中,而GF ...
- Hive command
hive常用命令 Hadoop Hive概念学习系列之hive里的分区(九) DOC hive分区(partition)简介 Hive分区(静态分区+动态分区) Hive分区.分桶操作及其比较 hiv ...
- BOM - 浏览器API
1,javascript 组成部分: 1.ECMAscript(核心标准): 定义了基本的语法,比如:if for 数组 字符串 ... 2.BOM : 浏览器对象模型(Browser ...