哎,被卡科技了,想了三个小时,最后还是大佬给我说是\(SG\)函数。

\(SG\)函数,用起来很简单,证明呢?(不可能的,这辈子都是不可能的)

\(SG\)定理

游戏的\(SG\)函数就是各个子游戏的\(SG\)函数的\(Nim-sum\)(就是异或和),比如多堆石子的\(SG\)函数就是所有单堆石子\(SG\)函数的异或和。

\(SG\)函数

首先定义\(mex(T)\)为\(T\)中未出现的自然数中最小的数,其中\(T \subset N\),如\(mex(0,2,3)=1\),\(mex(4,7)=0\)。那么\(SG(x)=mex(S)\),\(S\)为\(x\)的后继状态的\(SG\)函数值集合。

然后,对于某一个状态\(x\),若\(SG(x)=0\),则先手必败,否则先手必胜。

对于这一道题,因为只能拿约数个,也就是至少拿一个,所以我们可以先从小到大预处理一下\(SG\)函数。然后因为我们是先手,要给对手制造一个必败状态,所以只要枚举一下第一步的所有策略,然后判断一下剩下的那些石子的\(SG(x)\)函数的异或和是否为\(0\)就行了。

期望复杂度\(O(n^{\frac{3}{2}})\)。

#include <bits/stdc++.h>

using namespace std;

const int N = 100000;

int n, a[N+5], sum, p, ans, SG[N+5], vis[N+5];

void calc_SG() { //预处理SG函数
SG[0] = 0, SG[1] = 1; //初始化
for(int i = 2; i <= N+1; i++) {
int cnt = 0, t = 0x3f3f3f3f;
for(int j = 1; j*j <= i; j++)
if(i%j == 0) {
vis[++cnt] = SG[i-j];
if(j*j != i) vis[++cnt] = SG[i-i/j];
}
sort(vis+1, vis+cnt+1);
if(vis[1] >= 1) { //计算mex(T)
SG[i] = 0;
continue;
}
for(int j = 1; j <= cnt-1; j++)
if(vis[j+1]-vis[j] > 1) t = min(t, vis[j]+1);
t = min(t, vis[cnt]+1);
SG[i] = t;
}
} int main() {
ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); //读入输出加速
cin >> n;
calc_SG(); //预处理SG函数
for(int i = 1; i <= n; i++) cin >> a[i], sum ^= SG[a[i]];
for(int i = 1; i <= n; i++) {
p = sum^SG[a[i]];
for(int j = 1; j*j <= a[i]; j++) {
if(a[i]%j) continue;
if((p^SG[a[i]-j]) == 0) ans++; //判断剩下的Nim-sum是否为0
if(j*j != a[i] && (p^SG[a[i]-a[i]/j]) == 0) ans++;
}
}
cout << ans << endl;
return 0;
}

Wannafly挑战赛23 T2游戏 SG函数的更多相关文章

  1. 牛客Wannafly挑战赛23 B.游戏

    游戏 题目描述 小N和小O在玩游戏.他们面前放了n堆石子,第i堆石子一开始有ci颗石头.他们轮流从某堆石子中取石子,不能不取.最后无法操作的人就输了这个游戏.但他们觉得这样玩太无聊了,更新了一下规则. ...

  2. 组合游戏 - SG函数和SG定理

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  3. 题解——牛客网Wannafly挑战赛23 B-游戏 (SG函数)

    前言 比赛的时候没学过SG函数的蒟蒻以为是道结论题,但是不是QwQ 和dummyummy巨佬一起推了快三个小时的规律 最后去问了真正的巨佬__stdcall __stdcall面带微笑的告诉我们,这是 ...

  4. Nowcoder 挑战赛23 B 游戏 ( NIM博弈、SG函数打表 )

    题目链接 题意 : 中文题.点链接 分析 : 前置技能是 SG 函数.NIM博弈变形 每次可取石子是约数的情况下.那么就要打出 SG 函数 才可以去通过异或操作判断一个局面的胜负 打 SG 函数的时候 ...

  5. BZOJ1188 [HNOI2007]分裂游戏(SG函数)

    传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...

  6. BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏 [Nim游戏 SG函数]

    小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如 ...

  7. BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏(SG函数)

    Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 871  Solved: 365[Submit][Status][Discuss] Description ...

  8. HDU 1536 S-Nim (组合游戏+SG函数)

    题意:针对Nim博弈,给定上一个集合,然后下面有 m 个询问,每个询问有 x 堆石子 ,问你每次只能从某一个堆中取出 y 个石子,并且这个 y 必须属于给定的集合,问你先手胜还是负. 析:一个很简单的 ...

  9. BZOJ 1874 取石子游戏 - SG函数

    Description $N$堆石子, $M$种取石子的方式, 最后取石子的人赢, 问先手是否必胜 $A_i <= 1000$,$ B_i <= 10$ Solution 由于数据很小, ...

随机推荐

  1. linux下磁盘存储空间不足

    把自己平时遇到的问题分享给大家 Question:linux系统Ubuntu下面有一个Trash,当我们删除文件后,清空Trash,过一段时间发现磁盘空间不足 Answer:其实我们并没有真正的删除文 ...

  2. 记阿里云SLB后配置Nginx反向代理百度地图API的坑

    需求: 百度的原始请求:https://api.map.baidu.com/place/v2/suggestion?query=s&region=sc&city_limit=true& ...

  3. LeetCode算法题-Can Place Flowers(Java实现)

    这是悦乐书的第272次更新,第287篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第140题(顺位题号是605).假设你有一个花坛,其中一些地块是种植的,有些则不是. 然 ...

  4. python网络进阶篇

    并发编程 进程 操作系统的历史 # 手工操作 —— 穿孔卡片 # 程序员将对应于程序和数据的已穿孔的纸带(或卡片)装入输入机,然后启动输入机把程序和数据输入计算机内存,接着通过控制台开关启动程序针对数 ...

  5. Configuring Apache Kafka for Performance and Resource Management

    Apache Kafka is optimized for small messages. According to benchmarks, the best performance occurs w ...

  6. kernel笔记——VFS

    vfs(the virtual filesystem, virtual file switch)为应用程序访问文件提供了统一的接口,如read.write.open等. 下面我们看加载文件系统模块.格 ...

  7. 实现element-ui中table点击一行展开

    转:https://www.jianshu.com/p/e51ba4cb11d6 先上效果   效果图 三要素 1.row-click 点击行 2.ref 自行了解vue 3.toggleRowExp ...

  8. Java MultipartFile 使用记录

    private void file(String path,MultipartFile file){ String separator = "/"; String originFi ...

  9. html基础和CSS选择器

    一.html简单基础 什么是HTML HTML 是用来描述网页的一种语言. HTML 指的是超文本标记语言: HyperText Markup Language HTML 不是一种编程语言,而是一种标 ...

  10. python中的数组和列表

    ####转自:模式识别实验室主任   #环境win64+anaconda+python3.6 list & array (1)list不具有array的全部属性(如维度.转置等) 代码1: # ...