python可视化pyecharts
python可视化pyecharts
简单介绍
pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒,为了与 Python 进行对接,方便在 Python 中直接使用数据生成图。
echartsjs首页:https://www.echartsjs.com/index.html
pyecharts首页:http://pyecharts.herokuapp.com/pyecharts 开发文档:http://pyecharts.org/#/
渲染图表
安装 pyecharts
pip 安装
$ pip install pyecharts
源码安装
$ git clone https://github.com/pyecharts/pyecharts.git
$ cd pyecharts
$ pip install -r requirements.txt
$ python setup.py install
兼容性注意
pyecharts 支持 Python2.+ 和 Ptyhon3.+。如果你使用的是 Python2.,请在代码顶部声明字符编码,否则会出现中文乱码问题。 #coding=utf-
from __future__ import unicode_literals
注意
快速开始
首先开始来绘制你的第一个图表
from pyecharts import Bar
bar = Bar("我的第一个图表", "这里是副标题")
bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [, , , , , ])
# bar.print_echarts_options() # 该行只为了打印配置项,方便调试时使用
bar.render() # 生成本地 HTML 文件
运行程序报错
报错信息
ERROR:lml.utils:failed to import pyecharts_snapshot
Traceback (most recent call last):
File "D:\Envs\mytest\lib\site-packages\lml\utils.py", line , in do_import
plugin_module = __import__(plugin_module_name)
ModuleNotFoundError: No module named 'pyecharts_snapshot' 原因:缺少这个依赖包
解决办法
pip install pyecharts-snapshot
再次运行程序,程序执行成功会在同级目录下生成一个html文件

add()
主要方法,用于添加图表的数据和设置各种配置项
print_echarts_options()
打印输出图表的所有配置项
render()
默认将会在根目录下生成一个 render.html 的文件,支持 path 参数,设置文件保存位置,如 render(r"e:\my_first_chart.html"),文件用浏览器打开。
Note: 可以按右边的下载按钮将图片下载到本地,如果想要提供更多实用工具按钮,请在 add() 中设置 is_more_utils 为 True from pyecharts import Bar bar = Bar("我的第一个图表", "这里是副标题")
bar.add("服装",
["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [, , , , , ],
is_more_utils=True)
bar.render()
详解

使用主题
自 0.5.2+ 起,pyecharts 支持更换主体色系。下面是跟换为 'dark' 的例子:
import random from pyecharts import Bar X_AXIS = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
bar = Bar("我的第一个图表", "这里是副标题")
bar.use_theme("dark")
bar.add("商家A", X_AXIS, [random.randint(10, 100) for _ in range(6)])
bar.add("商家B", X_AXIS, [random.randint(10, 100) for _ in range(6)])
bar.add("商家C", X_AXIS, [random.randint(10, 100) for _ in range(6)])
bar.add("商家D", X_AXIS, [random.randint(10, 100) for _ in range(6)])
bar.render()

默认主题的效果,就是不设置主题的时候

如果我们要使用更多的主题,就需要安装echarts-themes-pypkg库,因为echarts 自带 dark 主题,pyecharts 也就自带了 dark。
echarts-themes-pypkg
vintage
macarons
infographic
shine
roma
westeros
wonderland
chalk
halloween
essos
walden
purple-passion
romantic
更多主题
安装主题插件
pip install echarts-themes-pypkg
使用主题
更换单个图形主题
bar.use_theme("vintage")
更换运行环境内所有图表主题
from pyecharts import configure
# 将这行代码置于首部
configure(global_theme='dark')
bar = Bar()
# 其他代码
使用自己构建的主题
Echarts 提供了主题构建工具,你可以从中构建喜欢的主题,如 myTheme.js。然后 hack echarts-themes-pypkg 包。具体操作如下 1.cd 到你 Python 安装环境下的 Lib/site-packages/echarts_themes_pypkg/resources 目录下,具体路径因操作系统而异
2.将 myTheme.js 放入到 resources/echarts-themes-js 文件夹下
3.改动 resources/registry.json 文件
"PINYIN_MAP": {
"shine": "shine",
...
"myTheme": "myTheme" # 这行
},
"FILE_MAP": {
"shine": "shine",
...
"myTheme": "myTheme" # 还有这行
}
1.cd 到 notebook 安装环境下的 jupyter/nbextensions/echarts-themes-js 目录下,具体路径因操作系统而异
2.将 myTheme.js 放入到 echarts-themes-js 文件夹下
3.使用 chart.use_theme("myTheme")
4、5 为可选项,如果不使用 notebook 的话可以忽略该步骤。
使用自己构建的主题
使用 pyecharts-snapshot 插件
如果想直接将图片保存为 png, pdf, gif 格式的文件,可以使用 pyecharts-snapshot。使用该插件请确保你的系统上已经安装了 Nodejs 环境。
- 安装 phantomjs
$ npm install -g phantomjs-prebuilt - 安装 pyecharts-snapshot
$ pip install pyecharts-snapshot - 调用
render方法bar.render(path='snapshot.png')文件结尾可以为 svg/jpeg/png/pdf/gif。请注意,svg 文件需要你在初始化 bar 的时候设置 renderer='svg'。
更多内容请移步至 pyecharts-snapshot
图形绘制过程
图表类提供了若干了构建和渲染的方法,在使用的过程中,建议按照以下的顺序分别调用:
| 步骤 | 描述 | 代码示例 | 备注 |
|---|---|---|---|
| 1 | 实例一个具体类型图表的对象 | chart = FooChart() |
|
| 2 | 为图表添加通用的配置,如主题 | chart.use_theme() |
|
| 3 | 为图表添加特定的配置 | geo.add_coordinate() |
|
| 4 | 添加数据及配置项 | chart.add() |
参考 数据解析与导入篇 |
| 5 | 生成本地文件(html/svg/jpeg/png/pdf/gif) | chart.render() |
从 v0.5.9 开始,以上涉及的方法均支持链式调用。例如:
from pyecharts import Bar CLOTHES = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
clothes_v1 = [5, 20, 36, 10, 75, 90]
clothes_v2 = [10, 25, 8, 60, 20, 80] (Bar("柱状图数据堆叠示例")
.add("商家A", CLOTHES, clothes_v1, is_stack=True)
.add("商家B", CLOTHES, clothes_v2, is_stack=True)
.render())
多次显示图表
从 v0.4.0+ 开始,pyecharts 重构了渲染的内部逻辑,改善效率。推荐使用以下方式显示多个图表。
from pyecharts import Bar, Line
from pyecharts.engine import create_default_environment bar = Bar("我的第一个图表", "这里是副标题")
bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90]) line = Line("我的第一个图表", "这里是副标题")
line.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90]) env = create_default_environment("html")
# 为渲染创建一个默认配置环境
# create_default_environment(filet_ype)
# file_type: 'html', 'svg', 'png', 'jpeg', 'gif' or 'pdf' env.render_chart_to_file(bar, path='bar.html')
env.render_chart_to_file(line, path='line.html')
相比第一个例子,该代码只是使用同一个引擎对象,减少了部分重复操作,速度有所提高。
Pandas&Numpy 简单示例
如果使用的是 Numpy 或者 Pandas,可以参考这个示例

Note: 使用 Pandas&Numpy 时,整数类型请确保为 int,而不是 numpy.int32
当然你也可以采用更加酷炫的方式,使用 Jupyter Notebook 来展示图表,matplotlib 有的,pyecharts 也会有的
Note: 从 v0.1.9.2 版本开始,废弃 render_notebook() 方法,现已采用更加 pythonic 的做法。直接调用本身实例就可以了。
比如这样

还有这样

如果使用的是自定义类,直接调用自定义类示例即可

更多 Jupyter notebook 的例子请参考 notebook-use-cases。可下载后运行看看。
如需使用 Jupyter Notebook 来展示图表,只需要调用自身实例即可,同时兼容 Python2 和 Python3 的 Jupyter Notebook 环境。所有图表均可正常显示,与浏览器一致的交互体验,这下展示报告连 PPT 都省了!!
python可视化pyecharts的更多相关文章
- python 可视化 pyecharts
github搜索pyecharts https://github.com/pyecharts/pyecharts echarts : https://www.echartsjs.com/zh/inde ...
- 【python可视化系列】python数据可视化利器--pyecharts
学可视化就跟学弹吉他一样,刚开始你会觉得自己弹出来的是噪音,也就有了在使用python可视化的时候,总说,我擦,为啥别人画的图那么溜: [python可视化系列]python数据可视化利器--pyec ...
- python可视化动态图表: 关于pyecharts的sankey桑基图绘制
最近因工作原因,需要处理一些数据,顺便学习一下动态图表的绘制.本质是使具有源头的流动信息能够准确找到其上下级关系和流向. 数据来源是csv文件 导入成为dataframe之后,列为其车辆的各部件供应商 ...
- Python可视化学习(1):Matplotlib的配置
Matplotlib是一个优秀的可视化库,它提供了丰富的接口,让Python的可视化落地显得非常容易上手.本系列是本人学习python可视化的学习笔记,主要用于监督自己的学习进度,同时也希望和相关的博 ...
- Pycon 2017: Python可视化库大全
本文首发于微信公众号“Python数据之道” 前言 本文主要摘录自 pycon 2017大会的一个演讲,同时结合自己的一些理解. pycon 2017的相关演讲主题是“The Python Visua ...
- 高效使用 Python 可视化工具 Matplotlib
Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时面临的一些挑战,为什么要使用Matplo ...
- Python可视化库-Matplotlib使用总结
在做完数据分析后,有时候需要将分析结果一目了然地展示出来,此时便离不开Python可视化工具,Matplotlib是Python中的一个2D绘图工具,是另外一个绘图工具seaborn的基础包 先总结下 ...
- 数据分析之---Python可视化工具
1. 数据分析基本流程 作为非专业的数据分析人员,在平时的工作中也会遇到一些任务:需要对大量进行分析,然后得出结果,解决问题. 所以了解基本的数据分析流程,数据分析手段对于提高工作效率还是非常有帮助的 ...
- Python 可视化工具 Matplotlib
英文出处:Chris Moffitt. Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时 ...
随机推荐
- python学习日记(OOP——静态方法和类方法)
classmethod 类方法在Python中使用比较少,类方法传入的第一个参数为cls,是类本身.并且,类方法可以通过类直接调用,或通过实例直接调用.但无论哪种调用方式,最左侧传入的参数一定是类本身 ...
- 越光后端开发——ygapi(3.引入xadmin)
1.引入xadmin 1.将xadmin文件夹放入extra_apps目录下: 2.在每个app下新建adminx.py 1.apps/users/目录下新建adminx.py: import xad ...
- PHP 加解密方法大全
最近看见一篇文章讲的是PHP的加解密方法,正好也自己学习下,顺便以后有用到的地方也好能快速用上,仅供自己学习和复习,好了不多BB,上代码. 基于这几个函数可逆转的加密为:base64_encode() ...
- Docker的可视化管理工具对比
Docker的可视化管理工具有DockerUI.Shipyard.Rancher.Portainer等等,这里主要对这几个进行优劣对比. DockerUI: 优点 (1)支持container批量 ...
- codeforces-1140 (div2)
A.维护一个前缀最大值,不断跳即可 #include <map> #include <set> #include <ctime> #include <cmat ...
- VMWare的host-only/bridged/NAT连接图文介绍
1 VMware简介 VMWare虚拟机软件是一个“虚拟PC”软件,它使我们可以在一台机器上同时运行二个或更多Windows.Linux等系统. 如果我们需要使用多个系统的话,传统的方式有两种: .使 ...
- [物理学与PDEs]第1章习题6 无限长载流直线的磁场
试计算电流强度为 $I$ 的无限长的直导线所产生的磁场的磁感强度. 解答: 设 $P$ 到直线的距离为 $r$, 垂足为 $P_0$, 则 ${\bf B}(P)$ 的方向为 ${\bf I}\tim ...
- C#利用Vini.cs操作INI文件
VClassLib-CS项目Github地址:https://github.com/velscode/VClassLib-CS VINI文档地址:https://github.com/velscode ...
- Python3:关于列表的操作(合并、拼接,嵌套排序··)
一:# 将2个列表合并成字典,按最少个数key=['winnie','anna','lisa']value=[18,20,22] k_v=dict(zip(key,value))print(k_v) ...
- JS遍历数组的操作(map、forEach、filter等)
1.map的用法 定义:原数组被“映射”成对应新数组 代码示例: var users = [ {name: "张含韵", "email": "zhan ...