【原创】大数据基础之HDFS(1)HDFS新创建文件如何分配Datanode
HDFS中的File由Block组成,一个File包含一个或多个Block,当创建File时会创建一个Block,然后根据配置的副本数量(默认是3)申请3个Datanode来存放这个Block;
通过hdfs fsck命令可以查看一个文件具体的Block、Datanode、Rack信息,例如:
hdfs fsck /tmp/test.sql -files -blocks -locations -racks
Connecting to namenode via http://name_node:50070
FSCK started by hadoop (auth:SIMPLE) from /client for path /tmp/test.sql at Thu Dec 13 15:44:12 CST 2018
/tmp/test.sql 16 bytes, 1 block(s): OK
0. BP-436366437-name_node-1493982655699:blk_1449692331_378721485 len=16 repl=3 [/DEFAULT/server111:50010, /DEFAULT/server121:50010, /DEFAULT/server43:50010]Status: HEALTHY
Total size: 16 B
Total dirs: 0
Total files: 1
Total symlinks: 0
Total blocks (validated): 1 (avg. block size 16 B)
Minimally replicated blocks: 1 (100.0 %)
Over-replicated blocks: 0 (0.0 %)
Under-replicated blocks: 0 (0.0 %)
Mis-replicated blocks: 0 (0.0 %)
Default replication factor: 3
Average block replication: 3.0
Corrupt blocks: 0
Missing replicas: 0 (0.0 %)
Number of data-nodes: 193
Number of racks: 1
FSCK ended at Thu Dec 13 15:44:12 CST 2018 in 1 millisecondsThe filesystem under path '/tmp/test.sql' is HEALTHY
那3个Datanode是如何选择出来的?有一个优先级:
1 当前机架(相对hdfs client而言)
2 远程机架(相对hdfs client而言)
3 另一机架
4 全部随机
然后每个机架能选择几个Datanode(即maxNodesPerRack)有一个计算公式,详见代码
org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer
private int findNewDatanode(final DatanodeInfo[] original
) throws IOException {
if (nodes.length != original.length + 1) {
throw new IOException(
new StringBuilder()
.append("Failed to replace a bad datanode on the existing pipeline ")
.append("due to no more good datanodes being available to try. ")
.append("(Nodes: current=").append(Arrays.asList(nodes))
.append(", original=").append(Arrays.asList(original)).append("). ")
.append("The current failed datanode replacement policy is ")
.append(dfsClient.dtpReplaceDatanodeOnFailure).append(", and ")
.append("a client may configure this via '")
.append(DFSConfigKeys.DFS_CLIENT_WRITE_REPLACE_DATANODE_ON_FAILURE_POLICY_KEY)
.append("' in its configuration.")
.toString());
}
注释:当没有找到新的datanode时会报异常,报错如下:
Caused by: java.io.IOException: Failed to replace a bad datanode on the existing pipeline due to no more good datanodes being available to try. (Nodes: current=[server82:50010], original=[server.82:50010]).
The current failed datanode replacement policy is ALWAYS, and a client may configure this via 'dfs.client.block.write.replace-datanode-on-failure.policy' in its configuration.
private void addDatanode2ExistingPipeline() throws IOException {
...
final DatanodeInfo[] original = nodes;
final LocatedBlock lb = dfsClient.namenode.getAdditionalDatanode(
src, fileId, block, nodes, storageIDs,
failed.toArray(new DatanodeInfo[failed.size()]),
1, dfsClient.clientName);
setPipeline(lb);
//find the new datanode
final int d = findNewDatanode(original);
注释:会调用getAdditionalDatanode方法来获取1个新的datanode,此处略去很多调用堆栈
org.apache.hadoop.hdfs.server.blockmanagement.BlockPlacementPolicyDefault
private DatanodeStorageInfo[] chooseTarget(int numOfReplicas,
Node writer,
List<DatanodeStorageInfo> chosenStorage,
boolean returnChosenNodes,
Set<Node> excludedNodes,
long blocksize,
final BlockStoragePolicy storagePolicy) {
...
int[] result = getMaxNodesPerRack(chosenStorage.size(), numOfReplicas);
numOfReplicas = result[0];
int maxNodesPerRack = result[1];
...
final Node localNode = chooseTarget(numOfReplicas, writer, excludedNodes,
blocksize, maxNodesPerRack, results, avoidStaleNodes, storagePolicy,
EnumSet.noneOf(StorageType.class), results.isEmpty());
注释:此处maxNodesPerRack表示每个机架最多只能分配几个datanode
private Node chooseTarget(int numOfReplicas,
Node writer,
final Set<Node> excludedNodes,
final long blocksize,
final int maxNodesPerRack,
final List<DatanodeStorageInfo> results,
final boolean avoidStaleNodes,
final BlockStoragePolicy storagePolicy,
final EnumSet<StorageType> unavailableStorages,
final boolean newBlock) {
...
if (numOfResults <= 1) {
chooseRemoteRack(1, dn0, excludedNodes, blocksize, maxNodesPerRack,
results, avoidStaleNodes, storageTypes);
if (--numOfReplicas == 0) {
return writer;
}
}
注释:此处会尝试在远程机架(即与已有的datanode不同的机架)获取一个新的datanode
protected void chooseRemoteRack(int numOfReplicas,
DatanodeDescriptor localMachine,
Set<Node> excludedNodes,
long blocksize,
int maxReplicasPerRack,
List<DatanodeStorageInfo> results,
boolean avoidStaleNodes,
EnumMap<StorageType, Integer> storageTypes)
throws NotEnoughReplicasException {
...
chooseRandom(numOfReplicas, "~" + localMachine.getNetworkLocation(),
excludedNodes, blocksize, maxReplicasPerRack, results,
avoidStaleNodes, storageTypes);
注释:此处会在所有可选的datanode中随机选择一个
protected DatanodeStorageInfo chooseRandom(int numOfReplicas,
String scope,
Set<Node> excludedNodes,
long blocksize,
int maxNodesPerRack,
List<DatanodeStorageInfo> results,
boolean avoidStaleNodes,
EnumMap<StorageType, Integer> storageTypes)
throws NotEnoughReplicasException {
...
int numOfAvailableNodes = clusterMap.countNumOfAvailableNodes(
scope, excludedNodes);
...
if (numOfReplicas>0) {
String detail = enableDebugLogging;
if (LOG.isDebugEnabled()) {
if (badTarget && builder != null) {
detail = builder.toString();
builder.setLength(0);
} else {
detail = "";
}
}
throw new NotEnoughReplicasException(detail);
}
注释:如果由于一些原因(比如节点磁盘满或者下线),导致numOfAvailableNodes计算结果为0,会抛出NotEnoughReplicasException
其中maxNodesPerRack计算逻辑如下:
org.apache.hadoop.hdfs.server.blockmanagement.BlockPlacementPolicyDefault
/**
* Calculate the maximum number of replicas to allocate per rack. It also
* limits the total number of replicas to the total number of nodes in the
* cluster. Caller should adjust the replica count to the return value.
*
* @param numOfChosen The number of already chosen nodes.
* @param numOfReplicas The number of additional nodes to allocate.
* @return integer array. Index 0: The number of nodes allowed to allocate
* in addition to already chosen nodes.
* Index 1: The maximum allowed number of nodes per rack. This
* is independent of the number of chosen nodes, as it is calculated
* using the target number of replicas.
*/
private int[] getMaxNodesPerRack(int numOfChosen, int numOfReplicas) {
int clusterSize = clusterMap.getNumOfLeaves();
int totalNumOfReplicas = numOfChosen + numOfReplicas;
if (totalNumOfReplicas > clusterSize) {
numOfReplicas -= (totalNumOfReplicas-clusterSize);
totalNumOfReplicas = clusterSize;
}
// No calculation needed when there is only one rack or picking one node.
int numOfRacks = clusterMap.getNumOfRacks();
if (numOfRacks == 1 || totalNumOfReplicas <= 1) {
return new int[] {numOfReplicas, totalNumOfReplicas};
}
int maxNodesPerRack = (totalNumOfReplicas-1)/numOfRacks + 2;
// At this point, there are more than one racks and more than one replicas
// to store. Avoid all replicas being in the same rack.
//
// maxNodesPerRack has the following properties at this stage.
// 1) maxNodesPerRack >= 2
// 2) (maxNodesPerRack-1) * numOfRacks > totalNumOfReplicas
// when numOfRacks > 1
//
// Thus, the following adjustment will still result in a value that forces
// multi-rack allocation and gives enough number of total nodes.
if (maxNodesPerRack == totalNumOfReplicas) {
maxNodesPerRack--;
}
return new int[] {numOfReplicas, maxNodesPerRack};
}
注释:
int maxNodesPerRack = (totalNumOfReplicas-1)/numOfRacks + 2;
if (maxNodesPerRack == totalNumOfReplicas) {
maxNodesPerRack--;
}
【原创】大数据基础之HDFS(1)HDFS新创建文件如何分配Datanode的更多相关文章
- 大数据学习(一)-------- HDFS
需要精通java开发,有一定linux基础. 1.简介 大数据就是对海量数据进行数据挖掘. 已经有了很多框架方便使用,常用的有hadoop,storm,spark,flink等,辅助框架hive,ka ...
- 【原创】大数据基础之Zookeeper(2)源代码解析
核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...
- 【原创】大数据基础之Kerberos(2)hive impala hdfs访问
1 hive # kadmin.local -q 'ktadd -k /tmp/hive3.keytab -norandkey hive/server03@TEST.COM'# kinit -kt / ...
- 大数据基础总结---HDFS分布式文件系统
HDFS分布式文件系统 文件系统的基本概述 文件系统定义:文件系统是一种存储和组织计算机数据的方法,它使得对其访问和查找变得容易. 文件名:在文件系统中,文件名是用于定位存储位置. 元数据(Metad ...
- 大数据技术之Hadoop(HDFS)
第1章 HDFS概述 1.1 HDFS产出背景及定义 1.2 HDFS优缺点 1.3 HDFS组成架构 1.4 HDFS文件块大小(面试重点) 第2章 HDFS的Shell操作(开发重点) 1.基本语 ...
- 大数据学习(02)——HDFS入门
Hadoop模块 提到大数据,Hadoop是一个绕不开的话题,我们来看看Hadoop本身包含哪些模块. Common是基础模块,这个是必须用的.剩下常用的就是HDFS和YARN. MapReduce现 ...
- 【原创】大数据基础之Impala(1)简介、安装、使用
impala2.12 官方:http://impala.apache.org/ 一 简介 Apache Impala is the open source, native analytic datab ...
- 大数据学习之旅1——HDFS版本演化
最近开始学习大数据,发现大数据有很多很多组件,我现在负责的是HDFS(Hadoop分布式储存系统)的学习,整理了一下HDFS的版本情况.因为HDFS是Hadoop的重要组成部分,所以有关HDFS的版本 ...
- 大数据之路week07--day01(HDFS学习,Java代码操作HDFS,将HDFS文件内容存入到Mysql)
一.HDFS概述 数据量越来越多,在一个操作系统管辖的范围存不下了,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,因此迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统 ...
随机推荐
- xadmin后台页面的自定制(2)重写钩子函数版
由于项目有通过自定义页面来实现功能的需求,百度也查了很多资料,也没找到合适的方法,所以决定分析源码,通过对源码的分析,找到了此方法. 01-需求 首先,如果要在xadmin中展示一个数据管理页面,首先 ...
- 利用cocoapods管理开源项目,支持 pod install安装整个流程记录(github公有库)
利用cocoapods管理开源项目,支持 pod install安装整个流程记录(github公有库),完成预期的任务,大致有下面几步: 1.代码提交到github平台 2.创建.podspec 3. ...
- Mybatis逆向工程 —— ResultMaps collection already contains value for ***
报错提示: Result Maps collection already contains value for ***. 遭遇场景: maven+ssm 项目中,采用了mybatis的逆向工程生成 p ...
- Python抓取天气信息并存储原来这么简单
我们计划抓取的数据:杭州的天气信息 实现数据抓取的逻辑:使用python 请求 URL,会返回对应的 HTML 信息,我们解析 html,获得自己需要的数据.(很简单的逻辑) 第一步:创建 Pytho ...
- LODOP不同打印机出现偏移问题
方法简单描述:1.精确套打,设置以纸张边缘为基点,可避免不同可打区域不同带了的影响.2.不同客户端打印机位置差异,可通过打印维护调整,结果在客户端本地.或调整打印机初始位置(本人使用的金税盘的开票软件 ...
- [模板] 次短路 | bzoj1726-[Usaco2006Nov]Roadblocks第二短路
简介 所谓次短路, 顾名思义, 就是第二短路. :P 1到n的次短路长度必然产生于:1到x的最短路 + edge(x,y) + y到n的最短路 简单证明一下: 设 \(dis(i,j)\) 表示 \( ...
- shutil模块和几种文件上传Demo
一.shutil模块 1.介绍 shutil模块是对os中文件操作的补充.--移动 复制 打包 压缩 解压 2.基本使用 1. shutil.copyfileobj(文件1, 文件2, 长度) 将文件 ...
- [curl]convert curl to python Ruby
https://curl.trillworks.com/
- CF1120D(神奇的构造+最小生成树)
考虑把树展开,单独把叶子节点拿出来 于是可以把控制点\(x\)的,抽象成是在它叶子节点间连权值为\(c_x\)的边 显然只用在\(x\)子树的最左边的叶子节点和最右边的叶子节点的下一个节点连边(最后一 ...
- 在鼠标右键上加入使用notepad++编辑【转】
我们在安装完notepad++文本编辑器之后,在一个文本文件上右键有时候并没有出现“使用notepad++编辑的选项”,我们可以通过简单地修改注册表文件来增加这样的功能: 1. 首先打开注册表,wi ...