题目:有代价的最短路径

题目介绍:如下图所示,现在平面上有N个点,此时N=7,每个点可能和其他点相连,相连的线有一定权值,求出从0点到N-1点的消耗权值的最小值。

分析:用动态规划的思路来解决,每一点与其他点的消耗权值的最小值都储存在一个二维数组中,下一个点消耗的最小值可以根据前一个点来得出。如果两个点不相连,可以认为这两点的权值为无穷大。设一个二维数组初始化为无穷,再导入权值初始值,再用状态方程得出最小值储存在数组中。

状态方程:l[k][j] = min(l[k][j], l[k][i] + l[i][j])

我们可以得出0到N-1的最短路径表格:

距离 0 1 2 3 4 5 6
0 0 2 5 3 1 3 6

代码:

 #include <iostream>
using namespace std;
int min(int a, int b);
int main()
{
int X = ;
int N = ;
int i, j, k;
int **l = new int *[N];
for (i = ; i<N; i++)
{
l[i] = new int[N];
}
for (i = ; i < N; i++)
{
for (j = ; j < N; j++)
{
l[i][j] = X;
}
}
l[][] = l[][] = ;
l[][] = l[][] = ;
l[][] = l[][] = ;
l[][] = l[][] = ;
l[][] = l[][] = ;
l[][] = l[][] = ;
l[][] = l[][] = ;
l[][] = l[][] = ;
for (k = ; k < N; k++)
{
for (j = ; j < N; j++)
{
for (i = ; i < N; i++)
{
l[k][j] = min(l[k][j], l[k][i] + l[i][j]);
}
}
}
for (i = ; i < N; i++)
{
cout << l[][i] << endl;
}
}
int min(int a, int b)
{
if (a > b)
{
return b;
}
else { return a; }
}

结果:

dp算法之有代价的最短路径的更多相关文章

  1. 0-1背包的动态规划算法,部分背包的贪心算法和DP算法------算法导论

    一.问题描述 0-1背包问题,部分背包问题.分别实现0-1背包的DP算法,部分背包的贪心算法和DP算法. 二.算法原理 (1)0-1背包的DP算法 0-1背包问题:有n件物品和一个容量为W的背包.第i ...

  2. 最大子段和的DP算法设计及其效率测试

    表情包形象取自番剧<猫咪日常> 那我也整一个 曾几何时,笔者是个对算法这个概念漠不关心的人,由衷地感觉它就是一种和奥数一样华而不实的存在,即便不使用任何算法的思想我一样能写出能跑的程序 直 ...

  3. 华为笔试——C++平安果dp算法

    题目:平安果 题目介绍:给出一个m*n的格子,每个格子里有一定数量的平安果,现在要求从左上角顶点(1,1)出发,每次走一格并拿走那一格的所有平安果,且只能向下或向右前进,最终到达右下角顶点(m,n), ...

  4. Flyod 算法(两两之间的最短路径)

    Flyod 算法(两两之间的最短路径)动态规划方法,通过相邻矩阵, 然后把最后的结果存在这么一个矩阵里面,(i,j), #include <iostream> #include <v ...

  5. dp算法之硬币找零问题

    题目:硬币找零 题目介绍:现在有面值1.3.5元三种硬币无限个,问组成n元的硬币的最小数目? 分析:现在假设n=10,画出状态分布图: 硬币编号 硬币面值p 1 1 2 3 3 5 编号i/n总数j ...

  6. C++数字三角形问题与dp算法

    题目:数字三角形 题目介绍:如图所示的数字三角形,要求从最上方顶点开始一步一步下到最底层,每一步必须下一层,求出所经过的数字的最大和. 输入:第一行值n,代表n行数值:后面的n行数据代表每一行的数字. ...

  7. DP问题练习1:数字三角最短路径问题

    DP问题练习1:数字三角最短路径问题 问题描述 给定一个数字三角形,找到从顶部到底部的最小路径和.每一步可以移动到下面一行的相邻数字上. 样例: 比如,给出下列数字三角形: 2 3 4 6 5 7 4 ...

  8. dfs与dp算法之关系与经典入门例题

    目录 声明 dfs与dp的关系 经典例题-数字三角形 - POJ 1163 题目 dfs思路 解题思路 具体代码 dp思路 解题思路 具体代码 声明 本文不介绍dfs.dp算法的基础思路,有想了解的可 ...

  9. 动态规划——DP算法(Dynamic Programing)

    一.斐波那契数列(递归VS动态规划) 1.斐波那契数列——递归实现(python语言)——自顶向下 递归调用是非常耗费内存的,程序虽然简洁可是算法复杂度为O(2^n),当n很大时,程序运行很慢,甚至内 ...

随机推荐

  1. mongodb的学习-5-概念解析

    http://www.runoob.com/mongodb/mongodb-databases-documents-collections.html mongodb中基本的概念是文档.集合.数据库 S ...

  2. CUDA和OpenGL互操作经典博文赏析和学习

    1.使用cuda+opengl图形互操作性实现MPR.原学位论文学习:实时交互的医学图像可视化.在该论文的第5.1.1节. 2.cuda与opengl互操作之PBO 3.cuda与opengl互操作之 ...

  3. dede:arclist调用文章正文全部内容

    dede:arclist调用文章正文全部内容 {dede:arclist row='20'} <div class="aboutbox"> <h4>[fie ...

  4. Ext4文件系统架构分析(一)

    本文描述Ext4文件系统磁盘布局和元数据的一些分析,同样适用于Ext3和Ext2文件系统,除了它们不支持的Ext4的特性外.整个分析分两篇博文,分别概述布局和详细介绍各个布局的数据结构及组织寻址方式等 ...

  5. day91 DjangoRestFramework学习三之认证组件、权限组件、频率组件、url注册器、响应器、分页组件

    DjangoRestFramework学习三之认证组件.权限组件.频率组件.url注册器.响应器.分页组件   本节目录 一 认证组件 二 权限组件 三 频率组件 四 URL注册器 五 响应器 六 分 ...

  6. 基于STM32F103ZET6 HC_SR04超声波测距模块

    这是最后的实验现象,改变不同的角度即可测得距离 板子 PZ6806L 超声波模块 HC_SR04 HC_SR04模块讲解 通过该超声波模块说明书,可明白供电需VCC 5V  还需GND  ECHO(回 ...

  7. mfc 类静态成员

    知识点 类静态数据成员 类静态成员函数 一.类静态数据成员 静态成员的提出是为了解决数据共享的问题.实现共享有许多方法,如:设置全局性的变量或对象是一种方法.但是,全局变量或对象是有局限性的.这一课里 ...

  8. Direct3D中 SetStreamSource 函数与数据流

    Microsoft? DirectX? 8.0引入了数据流的概念,用来把数据绑定到着色器使用的输入寄存器.一个数据流是一个成员数据的数组,每个成员由一个或多个元素构成,这些元素代表单个实体,如位置.法 ...

  9. 4513: [Sdoi2016]储能表

    4513: [Sdoi2016]储能表 链接 分析: 数位dp. 横坐标和纵坐标一起数位dp,分别记录当前横纵坐标中这一位是否受n或m的限制,在记录一维表示当前是否已经大于k了. 然后需要两个数组记录 ...

  10. 2_C语言中的数据类型 (一)2.1.常量和字符串常量

    2.1 常量就是在程序中不可变化的量,常量在定义的时候必须给一个初值. 1.1.1          #define 定义一个宏常量 1.1.2          const 定义一个const常量 ...