题意:

       给一个n*n的矩阵A,然后求S=A + A^2 + A^3 + ..+ A^k.

思路:

      矩阵快速幂,这个题目挺新颖的,以往的矩阵快速幂都是退出公式,然后构造矩阵,这个比较特别,直接上子矩阵吧

A 1   平方后得到 A^2 1+A  三次方   A^3   1+A+A^2

0 1               0   1             0     1       ...这样就行了,

还有注意这个是矩阵套矩阵,然后就是快速幂了,比较容易实现,有一点要注意,

大矩阵的单位矩阵只有对角线才是单位小矩阵,还有一个地方,就是最后我们要在大矩阵的1 2 位置减去单位矩阵,这个减去单位矩阵后如果比0小怎么办,我的处理方法是比0小就再加上余数。


#include<stdio.h>
#include<string.h> typedef struct
{
int mat[32][32];
}M; typedef struct
{
M MAT[3][3];
}MM; int n ,MOD; M matM(M a ,M b)
{
M c;
memset(c.mat ,0 ,sizeof(c.mat)); for(int k = 1 ;k <= n ;k ++)
for(int i = 1 ;i <= n ;i ++)
if(a.mat[i][k])
for(int j = 1 ;j <= n ;j ++)
c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j]) % MOD;
return c;
} M addM(M a ,M b)
{
M c;
memset(c.mat ,0 ,sizeof(c.mat));
for(int i = 1 ;i <= n ;i ++)
for(int j = 1 ;j <= n ;j ++)
c.mat[i][j] = (a.mat[i][j] + b.mat[i][j]) % MOD;
return c;
} MM matMM(MM a ,MM b)
{
MM c;
for(int i = 1 ;i <= 2 ;i ++)
for(int j = 1 ;j <= 2 ;j ++)
for(int k = 1 ;k <= n ;k ++)
for(int l = 1 ;l <= n ;l ++)
c.MAT[i][j].mat[k][l] = 0; for(int i = 1 ;i <= 2 ;i ++)
for(int j = 1 ;j <= 2 ;j ++)
for(int k = 1 ;k <= 2 ;k ++)
c.MAT[i][j] = addM(c.MAT[i][j] ,matM(a.MAT[i][k] ,b.MAT[k][j])); return c;
} MM quickMM(MM a ,int b)
{
MM c;
for(int i = 1 ;i <= 2 ;i ++)
for(int j = 1 ;j <= 2 ;j ++)
for(int k = 1 ;k <= n ;k ++)
for(int l = 1 ;l <= n ;l ++)
c.MAT[i][j].mat[k][l] = 0; for(int k = 1 ;k <= n ;k ++)
c.MAT[1][1].mat[k][k] = c.MAT[2][2].mat[k][k] = 1; while(b)
{
if(b & 1) c = matMM(c ,a);
a = matMM(a ,a);
b >>= 1;
}
return c;
} int main ()
{
int i ,j ,b;
MM A;
while(~scanf("%d %d %d" ,&n ,&b ,&MOD))
{
//MOD = 10000000;
for(i = 1 ;i <= n ;i ++)
for(j = 1 ;j <= n ;j ++)
{
scanf("%d" ,&A.MAT[1][1].mat[i][j]);
A.MAT[2][1].mat[i][j] = 0;
if(i == j)
A.MAT[1][2].mat[i][j] = A.MAT[2][2].mat[i][j] = 1;
else A.MAT[1][2].mat[i][j] = A.MAT[2][2].mat[i][j] = 0;
} MM ans = quickMM(A ,b + 1); for(int i = 1 ;i <= n ;i ++)
for(int j = 1 ;j <= n ;j ++)
{
if(i == j) ans.MAT[1][2].mat[i][j] --; if(ans.MAT[1][2].mat[i][j] < 0) ans.MAT[1][2].mat[i][j] += MOD; if(j == n) printf("%d\n",ans.MAT[1][2].mat[i][j]);
else printf("%d " ,ans.MAT[1][2].mat[i][j]);
}
}
return 0; }

POJ3233不错的矩阵(矩阵套矩阵)的更多相关文章

  1. 经典矩阵快速幂之一-----poj3233(矩阵套矩阵

    题意:给你一个矩阵A,求S=A+A^2+A^3+...+A^k. 其实这个当时我看着毫无头绪,看了他们给的矩阵发现好!精!妙! 我们这样看 是不是有点思路! 没错!就是右上角,我们以此类推可以得到A+ ...

  2. C++题解:Matrix Power Series ——矩阵套矩阵的矩阵加速

    Matrix Power Series r时间限制: 1 Sec 内存限制: 512 MB 题目描述 给定矩阵A,求矩阵S=A^1+A^2+--+A^k,输出矩阵,S矩阵中每个元都要模m. 数据范围: ...

  3. POJ - 3233 矩阵套矩阵

    题意:给你矩阵\(A\),求\(S=\sum_{i=1}^{k}A^i\) 构造矩阵 \[ \begin{bmatrix} A & E \\ 0 & E\\ \end{bmatrix} ...

  4. 二维KMP - 求字符矩阵的最小覆盖矩阵 - poj 2185

    Milking Grid Problem's Link:http://poj.org/problem?id=2185 Mean: 给你一个n*m的字符矩阵,让你求这个字符矩阵的最小覆盖矩阵,输出这个最 ...

  5. <矩阵的基本操作:矩阵相加,矩阵相乘,矩阵转置>

    //矩阵的基本操作:矩阵相加,矩阵相乘,矩阵转置 #include<stdio.h> #include<stdlib.h> #define M 2 #define N 3 #d ...

  6. Codevs 1287 矩阵乘法&&Noi.cn 09:矩阵乘法(矩阵乘法练手题)

    1287 矩阵乘法  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 小明最近在为线性代数而头疼, ...

  7. Matlab中矩阵的平方和矩阵中每个元素的平方介绍

    该文章讲述了Matlab中矩阵的平方和矩阵中每个元素的平方介绍.   设t = [2 4 2 4] 则>> t.^2 ans = 4 164 16 而>> t^2 ans = ...

  8. C语言经典算法 - 多维矩阵转一维矩阵的代码

    下边内容内容是关于C语言经典算法 - 多维矩阵转一维矩阵的内容,应该能对码农也有好处. #include <stdio.h>#include <stdlib.h>int mai ...

  9. Jacobian矩阵、Hessian矩阵和Newton's method

    在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jac ...

随机推荐

  1. JS table排序

    <html lang="en"> <head> <meta charset="UTF-8"> <meta http-e ...

  2. MySQL基础知识:创建MySQL数据库和表

    虚构一个微型在线书店的数据库和数据,作为后续MySQL脚本的执行源,方便后续MySQL和SQL的练习. 在虚构这个库的过程中,主要涉及的是如何使用命令行管理 MySQL数据库对象:数据库.表.索引.外 ...

  3. 基于ABP框架的SignalR,使用Winform程序进行功能测试

    在ABP框架里面,默认会带入SignalR消息处理技术,它同时也是ABP框架里面实时消息处理.事件/通知处理的一个实现方式,SignalR消息处理本身就是一个实时很好的处理方案,我在之前在我的Winf ...

  4. android底部导航栏小结

    android自带的有TabHost,但好像无法满足要求, 本文只记录使用 TabLayout + Fragment  和 android 自带的 BottomNavigationView + Fra ...

  5. 运用arcgis将标签图片(栅格图)转换为shp矢量文件

    最近在做图像分割校正,需要将ecognition分割好的shp文件做优化,但是如果直接对shp文件修改非常不友好,可以先对导出的tif标签图进行修改,然后将修改后的标签图转换为新的shp文件进行输出. ...

  6. 最权威的html 标签属性大全

    <p>---恢复内容开始---</p>1.html标签 <marquee>...</marquee>普通卷动 <marquee behavior= ...

  7. IDA报错fatal error before kernel init

    编写了一个IDA64插件,结果再打开IDA后报错fatal error before kernel init,然后闪退. 检查了一遍代码没发现有问题,后来发现是环境有一处配置错误, IDA64.exe ...

  8. ImportError: No module named site

    cmd中执行python提示:ImportError: No module named site 运行python.exe Fatal Python error: initfsencoding: un ...

  9. 「免费开源」基于Vue和Quasar的前端SPA项目crudapi后台管理系统实战之自定义组件(四)

    基于Vue和Quasar的前端SPA项目实战之序列号(四) 回顾 通过上一篇文章 基于Vue和Quasar的前端SPA项目实战之布局菜单(三)的介绍,我们已经完成了布局菜单,本文主要介绍序列号功能的实 ...

  10. LevelDB 源码解析之 Varint 编码

    GitHub: https://github.com/storagezhang Emai: debugzhang@163.com 华为云社区: https://bbs.huaweicloud.com/ ...