[ch04-02] 用梯度下降法解决线性回归问题
系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI,
点击star加星不要吝啬,星越多笔者越努力。
4.2 梯度下降法
有了上一节的最小二乘法做基准,我们这次用梯度下降法求解w和b,从而可以比较二者的结果。
4.2.1 数学原理
在下面的公式中,我们规定x是样本特征值(单特征),y是样本标签值,z是预测值,下标 \(i\) 表示其中一个样本。
预设函数(Hypothesis Function)
为一个线性函数:
\[z_i = x_i \cdot w + b \tag{1}\]
损失函数(Loss Function)
为均方差函数:
\[loss(w,b) = \frac{1}{2} (z_i-y_i)^2 \tag{2}\]
与最小二乘法比较可以看到,梯度下降法和最小二乘法的模型及损失函数是相同的,都是一个线性模型加均方差损失函数,模型用于拟合,损失函数用于评估效果。
区别在于,最小二乘法从损失函数求导,直接求得数学解析解,而梯度下降以及后面的神经网络,都是利用导数传递误差,再通过迭代方式一步一步逼近近似解。
4.2.2 梯度计算
计算z的梯度
根据公式2:
\[
{\partial loss \over \partial z_i}=z_i - y_i \tag{3}
\]
计算w的梯度
我们用loss的值作为误差衡量标准,通过求w对它的影响,也就是loss对w的偏导数,来得到w的梯度。由于loss是通过公式2->公式1间接地联系到w的,所以我们使用链式求导法则,通过单个样本来求导。
根据公式1和公式3:
\[
{\partial{loss} \over \partial{w}} = \frac{\partial{loss}}{\partial{z_i}}\frac{\partial{z_i}}{\partial{w}}=(z_i-y_i)x_i \tag{4}
\]
计算b的梯度
\[
\frac{\partial{loss}}{\partial{b}} = \frac{\partial{loss}}{\partial{z_i}}\frac{\partial{z_i}}{\partial{b}}=z_i-y_i \tag{5}
\]
4.2.3 代码实现
if __name__ == '__main__':
reader = SimpleDataReader()
reader.ReadData()
X,Y = reader.GetWholeTrainSamples()
eta = 0.1
w, b = 0.0, 0.0
for i in range(reader.num_train):
# get x and y value for one sample
xi = X[i]
yi = Y[i]
# 公式1
zi = xi * w + b
# 公式3
dz = zi - yi
# 公式4
dw = dz * xi
# 公式5
db = dz
# update w,b
w = w - eta * dw
b = b - eta * db
print("w=", w)
print("b=", b)
大家可以看到,在代码中,我们完全按照公式推导实现了代码,所以,大名鼎鼎的梯度下降,其实就是把推导的结果转化为数学公式和代码,直接放在迭代过程里!另外,我们并没有直接计算损失函数值,而只是把它融入在公式推导中。
4.2.4 运行结果
w= [1.71629006]
b= [3.19684087]
读者可能会注意到,上面的结果和最小二乘法的结果(w1=2.056827, b1=2.965434)相差比较多,这个问题我们留在本章稍后的地方解决。
代码位置
ch04, Level2
[ch04-02] 用梯度下降法解决线性回归问题的更多相关文章
- C / C ++ 基于梯度下降法的线性回归法(适用于机器学习)
写在前面的话: 在第一学期做项目的时候用到过相应的知识,觉得挺有趣的,就记录整理了下来,基于C/C++语言 原贴地址:https://helloacm.com/cc-linear-regression ...
- tensorflow实现svm多分类 iris 3分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)
# Multi-class (Nonlinear) SVM Example # # This function wll illustrate how to # implement the gaussi ...
- tensorflow实现svm iris二分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)
iris二分类 # Linear Support Vector Machine: Soft Margin # ---------------------------------- # # This f ...
- 机器学习中梯度下降法原理及用其解决线性回归问题的C语言实现
本文讲梯度下降(Gradient Descent)前先看看利用梯度下降法进行监督学习(例如分类.回归等)的一般步骤: 1, 定义损失函数(Loss Function) 2, 信息流forward pr ...
- 梯度下降法及一元线性回归的python实现
梯度下降法及一元线性回归的python实现 一.梯度下降法形象解释 设想我们处在一座山的半山腰的位置,现在我们需要找到一条最快的下山路径,请问应该怎么走?根据生活经验,我们会用一种十分贪心的策略,即在 ...
- 最小二乘法 及 梯度下降法 分别对存在多重共线性数据集 进行线性回归 (Python版)
网上对于线性回归的讲解已经很多,这里不再对此概念进行重复,本博客是作者在听吴恩达ML课程时候偶然突发想法,做了两个小实验,第一个实验是采用最小二乘法对数据进行拟合, 第二个实验是采用梯度下降方法对数据 ...
- 梯度下降法实现最简单线性回归问题python实现
梯度下降法是非常常见的优化方法,在神经网络的深度学习中更是必会方法,但是直接从深度学习去实现,会比较复杂.本文试图使用梯度下降来优化最简单的LSR线性回归问题,作为进一步学习的基础. import n ...
- 机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践 ...
- 简单线性回归(梯度下降法) python实现
grad_desc .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...
随机推荐
- ORM之单表操作
ORM简介 MVC或者MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库,这极大的减轻了开发人员的 ...
- 有Bug?你的代码神兽选对了吗
传说每一个优秀的程序员都有自己专属的镇码神兽 通过 工具网址 http://www.makepic.net/Tool/Image2ascii.html 将自己喜欢的神兽图片转成文本, 可以选择不同的分 ...
- 5. SOFAJRaft源码分析— RheaKV中如何存放数据?
概述 上一篇讲了RheaKV是如何进行初始化的,因为RheaKV主要是用来做KV存储的,RheaKV读写的是相当的复杂,一起写会篇幅太长,所以这一篇主要来讲一下RheaKV中如何存放数据. 我们这里使 ...
- [考试反思]1015csp-s模拟测试74:压迫
其实同时也是第27,一大片并列的. 真的是越考越烂. T1是个弱化的贪心原题,15分钟拿下没什么可说的. T2打的记忆化搜索,hash_mod太小撞哈希了,50->30 T3,想不到正解,90分 ...
- NOIP模拟 10
(果然题目描述越人畜无害,题目难度越丧心病狂) (感觉T2大大锻炼了我的码力) T1 辣鸡 看见自己作为题目标题出现在模拟赛中,我内心无比激动 看完题面,一个N^2暴力思路已经成形 然后开始拼命想正解 ...
- netty源码解析(4.0)-28 ByteBuf内存池:PooledByteBufAllocator-把一切组装起来
PooledByteBufAllocator负责初始化PoolArena(PA)和PoolThreadCache(PTC).它提供了一系列的接口,用来创建使用堆内存或直接内存的PooledByteBu ...
- 去除word文档页眉处的横杠
如何去除上图word文档页眉处的横杠 wps软件使用者 第一步双击页眉,到页眉页脚: 第一步点击上图页眉横线,点击无线型或者删除横线即可: Microsoft Office 专业增 ...
- 路径操作OS模块和Path类(全)一篇够用!
路径操作 路径操作模块 os模块 os属性 os.name # windows是nt, linux是posix os.uname() # *nix支持 sys.platform #sys模块的属性, ...
- Requests库使用总结
概述 Requests是python中一个很Pythonic的HTTP库,用于构建HTTP请求与解析响应 Requests开发哲学 Beautiful is better than ugly.(美丽优 ...
- sublime3中运行python文件
sublime3中运行python文件 tools->build system->new build stystem 粘贴下面代码{"cmd":["pytho ...