keras对图像数据进行增强 | keras data augmentation
本文首发于个人博客https://kezunlin.me/post/8db507ff/,欢迎阅读最新内容!
keras data augmentation
Guide
code
# import the necessary packages
from keras.preprocessing.image import ImageDataGenerator
from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import load_img
import numpy as np
import argparse
from keras_util import *
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to the input image")
ap.add_argument("-o", "--output", required=True,
help="path to output directory to store augmentation examples")
ap.add_argument("-p", "--prefix", type=str, default="image",
help="output filename prefix")
args = vars(ap.parse_args())
# load the input image, convert it to a NumPy array, and then
# reshape it to have an extra dimension
print("[INFO] loading example image...")
target_size = None
#target_size=(224,224)
image = load_img(args["image"], target_size=target_size)
image = img_to_array(image)
image = np.expand_dims(image, axis=0) # 1,h,w,c
# construct the image generator for data augmentation then
# initialize the total number of images generated thus far
# preprocessing_function: The function will run after the image is resized and augmented.
# The function should take one argument:
# one image (Numpy tensor with rank 3),
# and should output a Numpy tensor with the same shape.
# for 1 image --->(424,640,3)--->aug---(424,640,3)--->preprocess_input--->(424,640,3)
# for 1 image --->resize--->(224,224,3)--->aug---(224,224,3)--->preprocess_input--->(224,224,3)
aug = ImageDataGenerator(preprocessing_function=resnet.preprocess_input,
rotation_range=30,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode="nearest")
total = 0
# construct the actual Python generator
print("[INFO] generating images...")
imageGen = aug.flow(image,
batch_size=1,
save_to_dir=args["output"],
save_prefix=args["prefix"],
save_format="png")
next_image = next(imageGen)
print(next_image.shape)
print(next_image[0, :5,:5,0])
# loop over examples from our image data augmentation generator
for image in imageGen:
# increment our counter
total += 1
# if we have reached 10 examples, break from the loop
if total == 10:
break
output
target_size = None:
1 image --->(424,640,3)--->aug--->(424,640,3)--->preprocess_input--->(424,640,3)
target_size = (224,224):
1 image --->resize--->(224,224,3)--->aug--->(224,224,3)--->preprocess_input--->(224,224,3)
Reference
History
- 20190910: created.
Copyright
- Post author: kezunlin
- Post link: https://kezunlin.me/post/8db507ff/
- Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 3.0 unless stating additionally.
keras对图像数据进行增强 | keras data augmentation的更多相关文章
- 图像数据增强 (Data Augmentation in Computer Vision)
1.1 简介 深层神经网络一般都需要大量的训练数据才能获得比较理想的结果.在数据量有限的情况下,可以通过数据增强(Data Augmentation)来增加训练样本的多样性, 提高模型鲁棒性,避免过拟 ...
- Keras Data augmentation(数据扩充)
在深度学习中,我们经常需要用到一些技巧(比如将图片进行旋转,翻转等)来进行data augmentation, 来减少过拟合. 在本文中,我们将主要介绍如何用深度学习框架keras来自动的进行data ...
- 深度学习中的Data Augmentation方法(转)基于keras
在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augm ...
- keras系列︱图像多分类训练与利用bottleneck features进行微调(三)
引自:http://blog.csdn.net/sinat_26917383/article/details/72861152 中文文档:http://keras-cn.readthedocs.io/ ...
- 【Tool】Augmentor和imgaug——python图像数据增强库
Augmentor和imgaug--python图像数据增强库 Tags: ComputerVision Python 介绍两个图像增强库:Augmentor和imgaug,Augmentor使用比较 ...
- Keras中图像维度介绍
报错问题: ValueError: Negative dimension size caused by subtracting 5 from 1 for 'conv2d_1/convolution' ...
- 我的Keras使用总结(5)——Keras指定显卡且限制显存用量,常见函数的用法及其习题练习
Keras 是一个高层神经网络API,Keras是由纯Python编写而成并基于TensorFlow,Theano以及CNTK后端.Keras为支持快速实验而生,能够将我们的idea迅速转换为结果.好 ...
- Keras官方中文文档:keras后端Backend
所属分类:Keras Keras后端 什么是"后端" Keras是一个模型级的库,提供了快速构建深度学习网络的模块.Keras并不处理如张量乘法.卷积等底层操作.这些操作依赖于某种 ...
- 【48】数据扩充(Data augmentation)
数据扩充(Data augmentation) 大部分的计算机视觉任务使用很多的数据,所以数据扩充是经常使用的一种技巧来提高计算机视觉系统的表现.我认为计算机视觉是一个相当复杂的工作,你需要输入图像的 ...
随机推荐
- 《Web Development with Go》Middleware之使用codegangsta.negroni
这个第三方库,使用自定义中间件时, 语法就感觉流畅很多. package main import ( "fmt" "log" "net/http&qu ...
- Java学习关于setContentPane()和getContentPane()的应用
http://www.java-gaming.org/topics/active-rendering-in-j2me/25240/view.html
- 急速下载pandas
使用国内源进行下载: pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua ...
- SpringCloud中Feign的适配器的实现方案
前言 最近在做微服务的项目,各个系统之间需要进行调用,然后用一个适配器来实现服务之间的feign调用,使用适配器进行统一管理. 实现方案 首先我们需要将服务的名称进行单独的配置,可以方便的进行切换和扩 ...
- (六十一)c#Winform自定义控件-信号灯(工业)-HZHControls
官网 http://www.hzhcontrols.com 前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. GitHub:https://github.com/kww ...
- 汇总:ASP.NET Core中HttpContext获取传参数据,有哪些方式
一.原生方式: 1.POST(以ajax请求为案例,教大家用法) $.ajax({ type: "post", dataType: "json", cache: ...
- C# - VS2019 DataGridView导出到Excel的三种方法
//原文出处:http://www.yongfa365.com/Item/DataGridViewToExcel.html 1 #region DataGridView数据显示到Excel /// & ...
- Go-接口(作用类似python类中的多态)
一.定义接口 type Person interface { Run() //只要有run方法的都算 Person结构体 } //还有定义方法 type Person2 interface { Spe ...
- 前端Vue准备工作
环境准备: 1.安装Node&npm,只是为了要Node.js的环境https://nodejs.org/en/download/ 2.安装完成Node以及npm之后,就可以用npm conf ...
- Http相关小知识点笔记咯~
协议 先来说说什么是协议,协议其实指的是通信协议(Communications Protocol),也称传输协议.Wiki中的描述的是这样的,通信协议定义了通信中的语法学,语义学和同步规则以及可能存在 ...