本文首发于个人博客https://kezunlin.me/post/61d55ab4/,欢迎阅读!

opencv mat for loop

Series

Guide

Mat

  • for gray image, use type <uchar>
  • for RGB color image,use type <Vec3b>

gray format storage

color format storage: BGR

we can use method isContinuous() to judge whether the memory buffer is continuous or not.

color space reduction

uchar color_space_reduction(uchar pixel)
{
/*
0-9 ===>0
10-19===>10
20-29===>20
...
240-249===>24
250-255===>25 map from 256*256*256===>26*26*26
*/ int divideWith = 10;
uchar new_pixel = (pixel / divideWith)*divideWith;
return new_pixel;
}

color table

void get_color_table()
{
// cache color value in table[256]
int divideWith = 10;
uchar table[256];
for (int i = 0; i < 256; ++i)
table[i] = divideWith* (i / divideWith);
}

C++

ptr []

// C ptr []: faster but not safe
Mat& ScanImageAndReduce_Cptr(Mat& I, const uchar* const table)
{
// accept only char type matrices
CV_Assert(I.depth() != sizeof(uchar));
int channels = I.channels();
int nRows = I.rows;
int nCols = I.cols* channels;
if (I.isContinuous())
{
nCols *= nRows;
nRows = 1;
}
int i, j;
uchar* p;
for (i = 0; i < nRows; ++i)
{
p = I.ptr<uchar>(i);
for (j = 0; j < nCols; ++j)
{
p[j] = table[p[j]];
}
}
return I;
}

ptr ++

// C ptr ++: faster but not safe
Mat& ScanImageAndReduce_Cptr2(Mat& I, const uchar* const table)
{
// accept only char type matrices
CV_Assert(I.depth() != sizeof(uchar));
int channels = I.channels();
int nRows = I.rows;
int nCols = I.cols* channels;
if (I.isContinuous())
{
nCols *= nRows;
nRows = 1;
}
uchar* start = I.ptr<uchar>(0); // same as I.ptr<uchar>(0,0)
uchar* end = start + nRows * nCols;
for (uchar* p=start; p < end; ++p)
{
*p = table[*p];
}
return I;
}

at(i,j)

// at<uchar>(i,j): random access, slow
Mat& ScanImageAndReduce_atRandomAccess(Mat& I, const uchar* const table)
{
// accept only char type matrices
CV_Assert(I.depth() != sizeof(uchar));
const int channels = I.channels();
switch (channels)
{
case 1:
{
for (int i = 0; i < I.rows; ++i)
for (int j = 0; j < I.cols; ++j)
I.at<uchar>(i, j) = table[I.at<uchar>(i, j)];
break;
}
case 3:
{
Mat_<Vec3b> _I = I; for (int i = 0; i < I.rows; ++i)
for (int j = 0; j < I.cols; ++j)
{
_I(i, j)[0] = table[_I(i, j)[0]];
_I(i, j)[1] = table[_I(i, j)[1]];
_I(i, j)[2] = table[_I(i, j)[2]];
}
I = _I;
break;
}
}
return I;
}

Iterator

// MatIterator_<uchar>: safe but slow
Mat& ScanImageAndReduce_Iterator(Mat& I, const uchar* const table)
{
// accept only char type matrices
CV_Assert(I.depth() != sizeof(uchar));
const int channels = I.channels();
switch (channels)
{
case 1:
{
MatIterator_<uchar> it, end;
for (it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it)
*it = table[*it];
break;
}
case 3:
{
MatIterator_<Vec3b> it, end;
for (it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it)
{
(*it)[0] = table[(*it)[0]];
(*it)[1] = table[(*it)[1]];
(*it)[2] = table[(*it)[2]];
}
}
}
return I;
}

opencv LUT

// LUT
Mat& ScanImageAndReduce_LUT(Mat& I, const uchar* const table)
{
Mat lookUpTable(1, 256, CV_8U);
uchar* p = lookUpTable.data;
for (int i = 0; i < 256; ++i)
p[i] = table[i]; cv::LUT(I, lookUpTable, I);
return I;
}

forEach

forEach method of the Mat class that utilizes all the cores on your machine to apply any function at every pixel.

// Parallel execution with function object.
struct ForEachOperator
{
uchar m_table[256];
ForEachOperator(const uchar* const table)
{
for (size_t i = 0; i < 256; i++)
{
m_table[i] = table[i];
}
} void operator ()(uchar& p, const int * position) const
{
// Perform a simple operation
p = m_table[p];
}
}; // forEach use multiple processors, very fast
Mat& ScanImageAndReduce_forEach(Mat& I, const uchar* const table)
{
I.forEach<uchar>(ForEachOperator(table));
return I;
}

forEach with lambda

// forEach lambda use multiple processors, very fast (lambda slower than ForEachOperator)
Mat& ScanImageAndReduce_forEach_with_lambda(Mat& I, const uchar* const table)
{
I.forEach<uchar>
(
[=](uchar &p, const int * position) -> void
{
p = table[p];
}
);
return I;
}

time cost

no foreach

[1 Cptr   ] times=5000, total_cost=988 ms, avg_cost=0.1976 ms
[1 Cptr2 ] times=5000, total_cost=1704 ms, avg_cost=0.3408 ms
[2 atRandom] times=5000, total_cost=9611 ms, avg_cost=1.9222 ms
[3 Iterator] times=5000, total_cost=20195 ms, avg_cost=4.039 ms
[4 LUT ] times=5000, total_cost=899 ms, avg_cost=0.1798 ms [1 Cptr ] times=10000, total_cost=2425 ms, avg_cost=0.2425 ms
[1 Cptr2 ] times=10000, total_cost=3391 ms, avg_cost=0.3391 ms
[2 atRandom] times=10000, total_cost=20024 ms, avg_cost=2.0024 ms
[3 Iterator] times=10000, total_cost=39980 ms, avg_cost=3.998 ms
[4 LUT ] times=10000, total_cost=103 ms, avg_cost=0.0103 ms

foreach

[5 forEach     ] times=200000, total_cost=199 ms, avg_cost=0.000995 ms
[5 forEach lambda] times=200000, total_cost=521 ms, avg_cost=0.002605 ms [5 forEach ] times=20000, total_cost=17 ms, avg_cost=0.00085 ms
[5 forEach lambda] times=20000, total_cost=23 ms, avg_cost=0.00115 ms

results

Loop Type | Time Cost (us)

:----: |

ptr [] | 242

ptr ++ | 339

at | 2002

iterator | 3998

LUT | 10

forEach | 0.85

forEach lambda | 1.15

forEach is 10x times faster than LUT, 240~340x times faster than ptr [] and ptr ++, and 2000~4000x times faster than at and iterator.

code

code here

Python

pure python

# import the necessary packages
import matplotlib.pyplot as plt
import cv2
print(cv2.__version__) %matplotlib inline
3.4.2
# load the original image, convert it to grayscale, and display
# it inline
image = cv2.imread("cat.jpg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
print(image.shape)
#plt.imshow(image, cmap="gray")
(360, 480)
%load_ext cython
The cython extension is already loaded. To reload it, use:
%reload_ext cython
%%cython -a

def threshold_python(T, image):
# grab the image dimensions
h = image.shape[0]
w = image.shape[1] # loop over the image, pixel by pixel
for y in range(0, h):
for x in range(0, w):
# threshold the pixel
image[y, x] = 255 if image[y, x] >= T else 0 # return the thresholded image
return image
%timeit threshold_python(5, image)
263 ms ± 20.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

cython

%%cython -a

import cython

@cython.boundscheck(False)
cpdef unsigned char[:, :] threshold_cython(int T, unsigned char [:, :] image):
# set the variable extension types
cdef int x, y, w, h # grab the image dimensions
h = image.shape[0]
w = image.shape[1] # loop over the image
for y in range(0, h):
for x in range(0, w):
# threshold the pixel
image[y, x] = 255 if image[y, x] >= T else 0 # return the thresholded image
return image

numba

%timeit threshold_cython(5, image)
150 µs ± 7.14 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
from numba import njit

@njit
def threshold_njit(T, image):
# grab the image dimensions
h = image.shape[0]
w = image.shape[1] # loop over the image, pixel by pixel
for y in range(0, h):
for x in range(0, w):
# threshold the pixel
image[y, x] = 255 if image[y, x] >= T else 0 # return the thresholded image
return image
%timeit threshold_njit(5, image)
43.5 µs ± 142 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

numpy

def threshold_numpy(T, image):
image[image > T] = 255
return image
%timeit threshold_numpy(5, image)
111 µs ± 334 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

conclusions

image = cv2.imread("cat.jpg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
print(image.shape) %timeit threshold_python(5, image)
%timeit threshold_cython(5, image)
%timeit threshold_njit(5, image)
%timeit threshold_numpy(5, image)
(360, 480)
251 ms ± 6.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
143 µs ± 1.19 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
43.8 µs ± 284 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
113 µs ± 957 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
image = cv2.imread("big.jpg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
print(image.shape) %timeit threshold_python(5, image)
%timeit threshold_cython(5, image)
%timeit threshold_njit(5, image)
%timeit threshold_numpy(5, image)
(2880, 5120)
21.8 s ± 460 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
12.3 ms ± 231 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
3.91 ms ± 66.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
10.3 ms ± 179 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

60,480

  • python: 251 ms
  • cython: 143 us
  • numba: 43 us
  • numpy: 113 us

2880, 5120

  • python: 21 s
  • cython: 12 ms
  • numba: 4 ms
  • numpy: 10 ms

Reference

History

  • 20180823: created.

Copyright

快速遍历OpenCV Mat图像数据的多种方法和性能分析 | opencv mat for loop的更多相关文章

  1. 用 Python 排序数据的多种方法

    用 Python 排序数据的多种方法 目录 [Python HOWTOs系列]排序 Python 列表有内置就地排序的方法 list.sort(),此外还有一个内置的 sorted() 函数将一个可迭 ...

  2. Python的list循环遍历中,删除数据的正确方法

    在遍历list,删除符合条件的数据时,总是报异常,代码如下: num_list = [1, 2, 3, 4, 5] print(num_list) for i in range(len(num_lis ...

  3. Delphi导出数据的多种方法

    //Dxdbgrid,则直接用SaveToexcel即可//使用 ExcelWithOdbc 控件function TDataModule1.GetDataToFile(DsData: TObject ...

  4. php遍历目录与文件夹的多种方法详解

    遍历目录或遍历目录下指定类型的文件,这是每一个童鞋在写程序的时候难免会用到的.PHP本身也提供了很多灰常有用的函数,正确地使用它们,不会有错滴.下面就我个人学习过程中的一些总结,希望对想学PHP的童鞋 ...

  5. 遍历Map和List的几种方法和性能比较

    public static void main(String[] args) { Map<String, String> map = new HashMap<String, Stri ...

  6. android+opencv+opencl: cv::dft()的opencl版本的性能分析

    在小米mix 2s + 高通骁龙 845 + Adreno 630 上测试了opencl版本的cv::dft(). 测试数据 先看表格里面的描述: 名称 函数名 最大时间(ms) 平均时间(ms) 说 ...

  7. OpenCV图像数据字节对齐

    目录 1. IplImage的data字段,是char*类型,是4字节对齐. 2. 手动创建的Mat通常是没有字节对齐的 3. 从IplImage转过来的Mat,是字节对齐的 4. 总结 图像数据是否 ...

  8. opencv-4-成像系统与Mat图像颜色空间

    opencv-4-成像系统与Mat图像颜色空间 opencvc++qtmat 目标 知道 opencv 处理图像数据的格式 介绍 mat 基础内容 知道 BGR 颜色 显示 颜色转换 BGR 到 灰度 ...

  9. Python使用plotly绘制数据图表的方法

    转载:http://www.jb51.net/article/118936.htm 本篇文章主要介绍了Python使用plotly绘制数据图表的方法,实例分析了plotly绘制的技巧. 导语:使用 p ...

随机推荐

  1. odoo联调

    odoo联调(剑飞花 373500710) 1.准备工作 1.1.参考文章“odoo8.0+PyCharm4.5开发环境配置”配置好odoo开发环境 1.2.下载Chrome浏览器,安装. 1.3.下 ...

  2. <学会提问-批判性思维指南>运用

    引子 这是我第二遍读此书,我认为并且希望这次阅读对我整个人生产生深远的影响.人一出生身上带着母体的抵抗力,大概6个月以后开始渐渐消失,靠自身的抵抗力活着.30岁前很多人会带着上天给的运气,终有一天,用 ...

  3. 自定义表头Datagrid

    自定义的一个表头 <bp:BasePage x:Class="NetReform.Pages.RealProbabiTableCompare" xmlns="htt ...

  4. Knative 实战:如何在 Knative 中配置自定义域名及路由规则

    作者 | 元毅 阿里云智能事业群高级开发工程师 当前 Knative 中默认支持是基于域名的转发,可以通过域名模板配置后缀,但目前对于用户来说并不能指定全域名设置.另外一个问题就是基于 Path 和 ...

  5. Spring Boot WebFlux 2.1.7 中文翻译文档

    1. 前言 从一开始学习 Netty 到 rxjava.Rector,再到 java8 的 CompletableFuture,就深深的为响应式编程着迷,这种区别于传统的顺序式编程,没准未来能在编程世 ...

  6. BOOL,int,float,指针变量 与“零值”比较的if语句

    分别给出BOOL,int,float,指针变量 与“零值”比较的 if 语句(假设变量名为var) 解答: BOOL型变量:if(!var) int型变量: if(var==0) float型变量: ...

  7. vue+uwsgi+nginx部署luffty项目

    在部署项目之前本人已经将前端代码和后端代码发布在了一个网站上,大家可自行下载,当然如果有Xftp工具也可以直接从本地导入. django代码 https://files.cnblogs.com/fil ...

  8. Vue + Mui

    概述 Vue套用Mui的外壳开发app项目,可以通过Mui的 manifest.json 文件添加权限 1.新建Mui项目 首先,新建一个空的Mui项目 window.location.href = ...

  9. python 爬取网页简单数据---以及详细解释用法

    一.准备工作(找到所需网站,获取请求头,并用到请求头) 找到所需爬取的网站(这里举拉勾网的一些静态数据的获取)----------- https://www.lagou.com/zhaopin/Pyt ...

  10. python super原理,不是指父类

    class a(object): def __init__(self): print('in a') class b(a): def __init__(self): print('in b') sup ...