Tr A

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4166    Accepted Submission(s): 3109

Problem Description
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
 
Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
 
Output
对应每组数据,输出Tr(A^k)%9973。
 
Sample Input
2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9
 
Sample Output
2
2686
 #include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define MOD 9973
using namespace std;
struct Matrix
{
int mat[][];
};
int n,k,T;
Matrix mul(Matrix a,Matrix b)
{
Matrix c;
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
c.mat[i][j]=;
for(int k=;k<n;k++)
c.mat[i][j]=(c.mat[i][j]+a.mat[i][k]*b.mat[k][j])%MOD;
}
}
return c;
}
Matrix mod_pow(Matrix m,int n)
{
Matrix res;
memset(res.mat,,sizeof(res.mat));
for(int i=;i<;i++)
res.mat[i][i]=;
while(n)
{
if(n&)
res=mul(res,m);
m=mul(m,m);
n>>=;
}
return res;
}
int main()
{
freopen("in.txt","r",stdin);
cin>>T;
while(T--)
{
cin>>n>>k;
int u=;
Matrix p;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
cin>>p.mat[i][j];
Matrix ans=mod_pow(p,k);
for(int i=;i<n;i++)
u+=ans.mat[i][i];
cout<<u%MOD<<endl;
}
}
 

Tr A(HDU 1575 快速矩阵幂模板)的更多相关文章

  1. HDU - 6395 Sequence (分块+快速矩阵幂)

    给定递推式: 求Fn. 分析:给出的公式可以用快速矩阵幂运算得到,但 P/n 整除对于不同的i,值是不同的. 可以根据P将3-n分成若干块,每块中P整除n的值是相同的.分块的时候要注意判断. 将每块的 ...

  2. CodeForces621E 快速矩阵幂优化dp

    有时些候在用快速矩阵幂优化dp的时候,它的矩阵乘法是不那么容易被具体为题目背景的意思的,大多数时候难以理解矩阵之间相乘的实际意义,正如有时候我们不知道现在在做手头这些事情的意义,但倘若是因一个目标而去 ...

  3. Java大数——快速矩阵幂

    Java大数——快速矩阵幂 今天做了一道水题,尽管是水题,但是也没做出来.最后问了一下ChenJ大佬,才慢慢的改对,生无可恋了.... 题目描述: 给a,b,c三个数字,求a的b次幂对c取余. 数据范 ...

  4. HDU----(4291)A Short problem(快速矩阵幂)

    A Short problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  5. Tr A HDU 1575 (矩阵快速幂)

    #include<iostream> #include<vector> #include<string> #include<cmath> #includ ...

  6. HDU 1575(裸矩阵快速幂)

    emmmmm..就是矩阵快速幂,直接附代码: #include <cstdio> using namespace std; ; ; struct Matrix { int m[maxn][ ...

  7. HDU----(4549)M斐波那契数列(小费马引理+快速矩阵幂)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  8. HDU----(2157)How many ways??(快速矩阵幂)

    How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  9. Matrix Power Series(POJ 3233 构造新矩阵求解+ 快速矩阵幂)

    题目大意:给定A,k,m(取模),求解S = A + A2 + A3 + … + Ak. 思路:此题为求解幂的和,一开始直接一个个乘,TLE.时间消耗在累加上.此处巧妙构造新矩阵 p=    A 0 ...

随机推荐

  1. How systems researchers build systems

    Define the problem >>Identify the constraints and abstract problem propose solution:simple ide ...

  2. Altium Designer6打印PCB转印纸设置方法

    在学校经常要用热转印法做一些简单的PCB板,自己用的AD6.6,学校的打印店用99的比较多,这就造成打印不方便.为了充分利用自己实验室的打印机,今天买回来两张PCB打印纸.发现用AD6打印同比例的PC ...

  3. poj 2287 动态规划

    用贪心简单证明之后就是一个从两头取的动态规划 #include <iostream> #include <cstring> #include <cstdio> #i ...

  4. 【HDOJ】1224 Free DIY Tour

    DP. #include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm ...

  5. 关于NAT穿透的一些理解

    前些天在知乎回答了一个智能家居远程控制方面的问题,感觉自己对无公网IP地址环境下的穿透问题有些了解.昨天同事拿来一个网络摄像头,安装在ADSL路由器上网的环境下,可以远程查看视频,效果还挺不错,问我厂 ...

  6. velocity自定义动画

         话说好久没有写博客了,零星的整理了一些东西,没有形成系统,所以也没有在这里记录.        废话不多说了,进入今天的正题.不知道大家是否记得之前写过的一篇文章<制作炫酷的专题页面& ...

  7. PHP中字符串类型与数值类型混合计算

    字符串转数值的规则 当一个字符串被当作一个数值来取值,其结果和类型如下: 如果该字符串没有包含 '.','e' 或 'E' 并且其数字值在整型的范围之内(由 PHP_INT_MAX 所定义),该字符串 ...

  8. 最最常用的 100 个 Java 类(转)

    大部分的 Java 软件开发都会使用到各种不同的库.近日我们从一万个开源的 Java 项目中进行分析,从中提取出最常用的 Java 类,这些类有来自于 Java 的标准库,也有第三方库.每个类在同一个 ...

  9. SQL Server 各任务所维护

    SQL Server 正在运行的代码查看 SELECT [Spid] = session_id , ecid , [Database] = DB_NAME(sp.dbid) , [User] = nt ...

  10. hdu 1253 胜利大逃亡 (三维简单bfs+剪枝)

    胜利大逃亡 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...