Problem Description

有非常多从磁盘读取数据的需求,包含顺序读取、随机读取。为了提高效率,须要人为安排磁盘读取。

然而,在现实中,这样的做法非常复杂。

我们考虑一个相对简单的场景。

磁盘有很多轨道。每一个轨道有很多扇区。用于存储数据。当我们想在特定扇区来读取数据时,磁头须要跳转到特定的轨道、详细扇区进行读取操作。

为了简单,我们如果磁头能够在某个轨道顺时针或逆时针匀速旋转,旋转一周的时间是360个单位时间。

磁头也能够任意移动到某个轨道进行读取,每跳转到一个相邻轨道的时间为400个单位时间。跳转前后磁头所在扇区位置不变。一次读取数据的时间为10个单位时间,读取前后磁头所在的扇区位置不变。磁头同一时候仅仅能做一件事:跳转轨道,旋转或读取。

如今,须要在磁盘读取一组数据。如果每一个轨道至多有一个读取请求,这个读取的扇区是轨道上分布在 0到359内的一个整数点扇区,即轨道的某个360等分点。

磁头的起始点在0轨道0扇区,此时没有数据读取。在完毕全部读取后。磁头须要回到0轨道0扇区的始点位置。请问完毕给定的读取所需的最小时间。

Input

输入的第一行包括一个整数M(0<M<=100),表示測试数据的组数。

对于每组測试数据。第一行包括一个整数N(0<N<=1000),表示要读取的数据的数量。

之后每行包括两个整数T和S(0<T<=1000。0<= S<360),表示每一个数据的磁道和扇区。磁道是按升序排列,而且没有反复。

Output

对于每组測试数据,输出一个整数,表示完毕所有读取所需的时间。

Sample Input

3

1

1 10

3

1 20

3 30

5 10

2

1 10

2 11

Sample Output

830

4090

1642

这道题因为每次变轨的代价是400,而即使从一个角度到还有一个角度最大花费也仅仅有180。所以不存在先到i这个轨道上的某点,然后到i+k轨道上某点,再到i+m轨道上某点,再到i+j轨道上某点的情况(当中。m < k < j)。

到达顺序一定是从0轨道按升序到达最外层轨道。接着从最外层轨道按降序到达0轨道。而且每一个点仅仅遍历一次。

这样问题就转化成了:0到n从左到右依次排列,从每一个点到每一个点的花费不同,求从0到n再从n到0,每一个点到且仅到一次的最小花费是多少。

算法导论(第三版,中文)的231页有这个问题,被称为:双调欧几里得行旅商问题。之前也写过这样的问题,差点儿是一模一样,在这里就不写了。

请看这篇博客http://blog.csdn.net/catalyst1314/article/details/19005845

#include <cstdio>
#include <cstring>
#include<algorithm>
#include<cmath>
#define INF 99999999
using namespace std; struct NODE
{
int t ,s;
}nodes[1010]; int dp[1010][1010];
int n;
int dist[1010][1010]; int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
n++;
nodes[1].t = 0;
nodes[1].s = 0;
for(int i = 2;i <= n;i++)
{
scanf("%d%d",&nodes[i].t,&nodes[i].s);
for(int j = 1;j < i;j++)
{
int re = abs(nodes[i].s - nodes[j].s);
if(re >= 180)
{
re = 360 - re;
}
dist[i][j] = dist[j][i] = (nodes[i].t - nodes[j].t) * 400 + re;
}
}
for(int i = 1;i<=n;i++)
{
for(int j = 1;j<=i;j++)
{
dp[i][j] = dp[j][i] = INF;
}
}
dp[2][1] = dp[1][2] = dist[1][2];
for(int j = 3;j<=n;j++)
{
dp[j][1] = dp[1][j] = dp[1][j-1] + dist[j-1][j];
}
for(int i = 2;i<=n;i++)
{
int ans = INF;
for(int k = 1;k<i;k++)
{
if(ans > dp[i][k] + dist[k][i+1])
{
ans = dp[i][k] + dist[k][i+1];
}
}
dp[i+1][i] = dp[i][i+1] = ans;
for(int j = i + 2;j<=n;j++)
{
dp[j][i] = dp[i][j] = dp[i][j-1] + dist[j-1][j];
}
}
dp[n][n] = dp[n][n-1] + dist[n-1][n];
printf("%d\n",dp[n][n] + (n - 1) * 10);
}
return 0;
}

2014年百度之星资格赛第二题Disk Schedule的更多相关文章

  1. 2014年百度之星程序设计大赛 - 资格赛 第二题 Disk Schedule

    双调欧几里得旅行商问题是一个经典动态规划问题.<算法导论(第二版)>思考题15-1和北京大学OJ2677都出现了这个题目. 旅行商问题描写叙述:平面上n个点,确定一条连接各点的最短闭合旅程 ...

  2. 2014年百度之星资格赛第一题Energy Conversion

    Problem Description 魔法师百小度也有遇到难题的时候-- 如今.百小度正在一个古老的石门面前,石门上有一段古老的魔法文字,读懂这样的魔法文字须要耗费大量的能量和大量的脑力. 过了许久 ...

  3. 2014年百度之星资格赛第三题Xor Sum

    Problem Description Zeus 和 Prometheus 做了一个游戏,Prometheus 给 Zeus 一个集合,集合中包括了N个正整数,随后 Prometheus 将向 Zeu ...

  4. 2014在百度之星资格赛的第二个问题Disk Schedule

    事实上,我认为它可以用来费用流问题.但光建地图上加班. ..不科学啊.. . 因副作用太大,否则,必然在.最后,想啊想,或者使用dp对.... 别想了一维dp... .我不知道我是怎么想.无论如何,这 ...

  5. 2014年百度之星资格赛第四题Labyrinth

    Problem Description 度度熊是一仅仅喜欢探险的熊.一次偶然落进了一个m*n矩阵的迷宫.该迷宫仅仅能从矩阵左上角第一个方格開始走.仅仅有走到右上角的第一个格子才算走出迷宫,每一次仅仅能 ...

  6. 2014百度之星第二题Disk Schedule(双调欧几里得旅行商问题+DP)

    Disk Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  7. 百度之星资格赛2018B题-子串查询

    子串查询 题目 度度熊的字符串课堂开始了!要以像度度熊一样的天才为目标,努力奋斗哦! 为了检验你是否具备不听课的资质,度度熊准备了一个只包含大写英文字母的字符串 A[1,n]=a1a2⋯an,接下来他 ...

  8. 2014在百度之星资格赛的第四个冠军Labyrinth

    Problem Description 熊度仅仅是一种冒险的熊,一个偶然落入一个m*n迷宫矩阵,能从矩阵左上角第一个方格開始走,仅仅有走到右上角的第一个格子才算走出迷宫.每一次仅仅能走一格,且仅仅能向 ...

  9. 【2014年百度之星资格赛1001】Energy Conversion

    Problem Description 魔法师百小度也有遇到难题的时候—— 现在,百小度正在一个古老的石门面前,石门上有一段古老的魔法文字,读懂这种魔法文字需要耗费大量的能量和大量的脑力. 过了许久, ...

随机推荐

  1. python学习之路-1 python基础操作

    本篇所涉及的内容 变量 常量 字符编码 用户交互input 格式化字符串 python的缩进规则 注释 初始模块 条件判断 循环 变量 变量的概念基本上和初中代数的方程变量是一致的,只是在计算机程序中 ...

  2. [HDU 1535]Invitation Cards[SPFA反向思维]

    题意: (欧洲人自己写的题面就是不一样啊...各种吐槽...果断还是看晕了) 有向图, 有个源叫CCS, 求从CCS到其他所有点的最短路之和, 以及从其他所有点到CCS的最短路之和. 思路: 返回的时 ...

  3. mybatis于Date和DateTime现场插入

    最近,该公司使用MyBatis3做数据持久层,有在该领域Date和DateTime种类,只有在插入数据时属性设置为一个实体Timestamp将相应mysql的DateTime类型.Date会相应mys ...

  4. 利用Python进行数据分析——数据规整化:清理、转换、合并、重塑(七)(1)

    数据分析和建模方面的大量编程工作都是用在数据准备上的:载入.清理.转换以及重塑.有时候,存放在文件或数据库中的数据并不能满足你的数据处理应用的要求.很多人都选择使用通用编程语言(如Python.Per ...

  5. 获取客户端IP地址定位城市信息

    获取客户端IP地址定位城市信息 1.首先获取客户端的IP地址 function getIPaddress(){ $IPaddress=''; if (isset($_SERVER)){ if (iss ...

  6. 自定义上传按钮 <input type="file" name = "file"/> (将file隐藏在button下)

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  7. 函数内部用setTimeout()调用自身函数相当于setInterval()

    本来setTimeout(function(){},time)只执行了一次function,但是当 function demo() { alert(1); setTimeout('demo()' ,5 ...

  8. SpringMvc学习-增删改查

    本节主要介绍SpringMVC简单的增删改查功能. 1.查询 dao中的代码 public List<WeatherPojo> getAllWeather(){ String sql=&q ...

  9. Oracle中MERGE语句的使用

    Oracle在9i引入了merge命令, 通过这个merge你能够在一个SQL语句中对一个表同时执行inserts和updates操作. 当然是update还是insert是依据于你的指定的条件判断的 ...

  10. js中的this指向

    1, 指向window 全局变量 alert(this) //返回 [object Window] 全局函数 function sayHello(){ alert(this); } sayHello( ...