状压 DP:[USACO06NOV] Corn Fields,[USACO13NOV] No Change
[USACO06NOV] Corn Fields
(试题来源:Link
)
题目描述
Farmer John has purchased a lush new rectangular pasture composed of \(M\) by \(N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12)\) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.
Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.
农场主 John 新买了一块长方形的新牧场,这块牧场被划分成 \(M\) 行 \(N\) 列 \((1 ≤ M ≤ 12; 1 ≤ N ≤ 12)\),每一格都是一块正方形的土地。John 打算在牧场上的某几格里种上美味的草,供他的奶牛们享用。
遗憾的是,有些土地相当贫瘠,不能用来种草。并且,奶牛们喜欢独占一块草地的感觉,于是 John 不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。
John 想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择?(当然,把新牧场完全荒废也是一种方案)
输入输出格式
输入格式:
- 第 \(1\) 行:两个整数 \(M\) 和 \(N\),用空格隔开。
- 第 \(2\) 到第 \(M+1\) 行:每行包含 \(N\) 个用空格隔开的整数,描述了每块土地的状态。第 \(i+1\) 行描述了第 \(i\) 行的土地,所有整数均为 \(0\) 或 \(1\),是 \(1\) 的话,表示这块土地足够肥沃,\(0\) 则表示这块土地不适合种草。
输出格式:
- 一个整数,即牧场分配总方案数除以 \(100,000,000\) 的余数。
输入输出样例
输入样例 #1:
2 3
1 1 1
0 1 0
输出样例 #1:
9
状态压缩 DP,预处理每行可能的全部状态。每个当前状态由上一行所有并行状态累加得到。
/* [USACO06NOV] Corn Fields
* Au: GG
*/
#include <cstdio>
const int N = 4197, M = 15, MOD = 100000000;
int n, m, dp[M][N], ans;
struct node {
int s[N], st;
} p[M];
int main() {
scanf("%d%d", &m, &n);
for (int i=1, a, t; i<=m; i++) {
t = 0;
for (int j=1; j<=n; j++)
scanf("%d", &a), t = (t<<1) + 1 - a;
for (int j=0; j< (1<<n); j++)
if ((j&(j<<1))||(j&(j>>1))||(j&t)) continue;
else p[i].s[++p[i].st] = j;
}
for (int i=1; i<=p[1].st; i++) dp[1][i] = 1;
for (int i=2; i<=m; i++)
for (int j=1; j<=p[i].st; j++)
for (int k=1; k<=p[i-1].st; k++)
if (!(p[i].s[j] & p[i-1].s[k])) dp[i][j] += dp[i-1][k];
for (int i=1; i<=p[m].st; i++)
ans = (ans + dp[m][i]) % MOD;
printf("%d\n", ans);
return 0;
}
[USACO13NOV] No Change
(试题来源:Link
)
题目描述
Farmer John is at the market to purchase supplies for his farm. He has in his pocket \(K\) coins \((1 \leq K \leq 16)\), each with value in the range \(1..100,000,000\). FJ would like to make a sequence of \(N\) purchases \((1 \leq N \leq 100,000)\), where the ith purchase costs \(c(i)\) units of money \((1 \leq c(i) \leq 10,000)\). As he makes this sequence of purchases, he can periodically stop and pay, with a single coin, for all the purchases made since his last payment (of course, the single coin he uses must be large enough to pay for all of these). Unfortunately, the vendors at the market are completely out of change, so whenever FJ uses a coin that is larger than the amount of money he owes, he sadly receives no changes in return!
Please compute the maximum amount of money FJ can end up with after making his \(N\) purchases in sequence. Output \(-1\) if it is impossible for FJ to make all of his purchases.
John 到商场购物,他的钱包里有 \(K(1 \leq K \leq 16)\) 个硬币,面值的范围是 \(1..100,000,000\)。
John 想按顺序买 \(N\) 个物品 \((1 \leq N \leq 100,000)\),第 \(i\) 个物品需要花费 \(c(i)\) 块钱,\((1 \leq c(i) \leq 10,000)\)。
在依次进行的购买 \(N\) 个物品的过程中,John 可以随时停下来付款,每次付款只用一个硬币,支付购买的内容是从上一次支付后开始到现在的这些所有物品(前提是该硬币足以支付这些物品的费用)。不幸的是,商场的收银机坏了,如果 John 支付的硬币面值大于所需的费用,他不会得到任何找零。
请计算出在购买完 \(N\) 个物品后,John 最多剩下多少钱。如果无法完成购买,输出 \(- 1\)
输入输出格式
输入格式:
- Line \(1\): Two integers, \(K\) and \(N\).
- Lines \(2..1+K\): Each line contains the amount of money of one of FJ's coins.
- Lines \(2+K..1+N+K\): These \(N\) lines contain the costs of FJ's intended purchases.
输出格式:
- Line \(1\): The maximum amount of money FJ can end up with, or \(-1\) if FJ cannot complete all of his purchases.
输入输出样例
输入样例 #1:
3 6
12
15
10
6
3
3
2
3
7
输出样例 #1:
12
说明
FJ has 3 coins of values 12, 15, and 10. He must make purchases in sequence of value 6, 3, 3, 2, 3, and 7.
FJ spends his 10-unit coin on the first two purchases, then the 15-unit coin on the remaining purchases. This leaves him with the 12-unit coin.
前缀和存物品费用;\(dp[i]\) 为 \(i\) 状态能购买的最大数量商品。由每个状态产生新的状态(刷表法),二分求出当前已使用 \(i\) 状态硬币之后,下一个硬币能购买到的最大数量商品,统计最大值。
二分理论上可以用 lower_bound 替换,可惜本人技艺不精,bug 太多故未使用。
/* [USACO13NOV] No Change
* Au: GG
*/
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 100005;
int k, n, w[N], coin[18], dp[1<<17], ans=-1;
int main() {
scanf("%d%d", &k, &n);
for (int i=1; i<=k; i++) scanf("%d", &coin[i]);
for (int i=1; i<=n; i++) scanf("%d", &w[i]), w[i]+=w[i-1];
for (int i=0; i<(1<<k); i++) {
if (dp[i]==n) {
int res=0;
for (int j=1; j<=k; j++) if (!(i&(1<<j-1))) res+=coin[j];
ans = max(ans, res);
}
for (int j=1; j<=k; ++j) if (!(i&(1<<j-1))) {
int now = i | (1<<j-1);
int l=dp[i], r=n, mid;
while (l<r) {
mid = (l+r+1)>>1;
if (w[mid]-w[dp[i]]<=coin[j]) l=mid; else r=mid-1;
}
dp[now] = max(dp[now], l);
}
}
printf("%d\n", ans);
return 0;
}
状压 DP:[USACO06NOV] Corn Fields,[USACO13NOV] No Change的更多相关文章
- 状压DP : [USACO06NOV]玉米田
玉米田 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目描述 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ ...
- P1879 [USACO06NOV]玉米田Corn Fields(状压dp)
P1879 [USACO06NOV]玉米田Corn Fields 状压dp水题 看到$n,m<=12$,肯定是状压鸭 先筛去所有不合法状态,蓝后用可行的状态跑一次dp就ok了 #include& ...
- P1879 [USACO06NOV]玉米田Corn Fields 状压dp/插头dp
正解:状压dp/插头dp 解题报告: 链接! ……我真的太菜了……我以为一个小时前要搞完的题目调错误调了一个小时……90分到100我差不多搞了一个小时…… 然后这题还是做过的……就很气,觉得确实是要搞 ...
- [USACO06NOV]玉米田$Corn \ \ Fields$ (状压$DP$)
#\(\mathcal{\color{red}{Description}}\) \(Link\) 农场主\(John\)新买了一块长方形的新牧场,这块牧场被划分成\(M\)行\(N\)列\((1 ≤ ...
- [USACO06NOV]玉米田Corn Fields 状压DP
题面: 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地.John打算在牧场上的某几格里种上美味的草,供他的 ...
- [USACO06NOV]玉米田Corn Fields (状压$dp$)
题目链接 Solution 状压 \(dp\) . \(f[i][j][k]\) 代表前 \(i\) 列中 , 已经安置 \(j\) 块草皮,且最后一位状态为 \(k\) . 同时多记录一个每一列中的 ...
- 状压DP【p1879】[USACO06NOV]玉米田Corn Fields
Description 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地.John打算在牧场上的某几格里种上 ...
- 【BZOJ1725】[Usaco2006 Nov]Corn Fields牧场的安排 状压DP
[BZOJ1725][Usaco2006 Nov]Corn Fields牧场的安排 Description Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M< ...
- poj3254 Corn Fields (状压DP)
http://poj.org/problem?id=3254 Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissio ...
随机推荐
- [转]Scikit-learn使用总结
1 scikit-learn基础介绍 1.1 估计器(Estimator) 估计器,很多时候可以直接理解成分类器,主要包含两个函数: fit():训练算法,设置内部参数.接收训练集和类别两个参数. p ...
- 数据库学习之mysql数据库
参考链接网站: http://c.biancheng.net/view/2361.html Mysql的版本以及版本号 MySQL Community Server(社区版):该版本完全免费,但是官方 ...
- python数据类型补充
四.元组 #为何要有元组,存放多个值,元组不可变,更多的是用来做查询 t=(1,[1,3],'sss',(1,2)) #t=tuple((1,[1,3],'sss',(1,2))) # print(t ...
- MyBatis-Spring的sqlSessionTemplate
转自:http://www.cnblogs.com/yhtboke/p/5611375.html SqlSessionTemplate SqlSessionTemplate是MyBatis-Sprin ...
- [洛谷P1552] [APIO2012]派遣(左偏树)
这道题是我做的左偏树的入门题,奈何还是看了zsy大佬的题解才能过,唉,我太弱了. 左偏树总结 Part 1 理解题目 很显然,通过管理关系的不断连边,最后连出来的肯定是一棵树,那么不难得出,当一个忍者 ...
- python学习三十七天函数的作用域查找顺序LEGB
python函数的作用域查找顺序LEGB,分别为 locals eclosing globals builtins .了解作用域的范围,可以更好的操作你想要的业务,分别介绍一下. 1,local ...
- 谁动了我的内存:php内存泄露,系统缓存消耗? 转摘:http://blog.csdn.net/tao_627/article/details/9532497
http://www.laruence.com/2011/03/04/1894.html 前言:持续我一贯的标题党作风,说说例子解决方案,没有深入探讨. 情景:线上图片服务压缩的图片品质(100),缩 ...
- struts2的action方法匹配以及通配符的使用
1. ActionMethod:Action执行的时候并不一定要执行execute方法,可以在配置文件中配置action的时候用"method"属性来指定执行哪个方法,也可以在ur ...
- http响应代码解释
200:成功响应 302:找到,但是请求的资源在另外一个不同的url中. 400:错误请求.这个请求不能被服务器所理解,客户端必须修改请求. 401:未认证,这个请求需要用户认证. 404:未找到.服 ...
- Java JNA (三)—— 结构体使用及简单示例
JNA简介 JNA全称Java Native Access,是一个建立在经典的JNI技术之上的Java开源框架(https://github.com/twall/jna).JNA提供一组Java工具类 ...