前言

这道题目是道好题。

第一次div-2进前100,我太弱了。

题解

公式推导

我们观察这个式子。

\[(a_i+a_j)(a_i^2+a_j^2)\equiv k \mod p
\]

感觉少了点什么,我们想到两边同时乘一个\((a_i-a_j)\)。

于是它变成了:

\[(a_i^2-a_j^2)(a_i^2+a_j^2) \equiv k(a_i-a_j) \mod p
\]

也就是:

\[a_i^4-a_j^4 \equiv k(a_i-a_j) \mod p
\]

把\(k\)乘进去变成:

\[a_i^4-a_j^4 \equiv ka_i-ka_j \mod p
\]

变换一下就是

\[a_i^4-ka_i \equiv a_j^4-ka_j \mod p
\]

公式到这里就推完了

代码实现

实现很简单,根据上面的的公式,由于k是确定的,我们对于所有的\(a_i\)把\((a_i^4-ka_i)\)取模之后放入一个STL map中,然后我们就可以计算有多少数跟它相同了。

复杂度

鉴于STL map的复杂度,时间复杂度为\(\Theta(nlog_2n)\)。

代码

#include <cstdio>
#include <map> using namespace std; long long read(){
long long x = 0; int zf = 1; char ch = ' ';
while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;
} map<long long, long long> mp; int main() {
long long n = read(), p = read(), k = read();
long long res = 0;
for (int i = 1; i <= n; ++i){
long long x = read();
long long tmp = ((((((x * x) % p * x) % p * x) % p - k * x) % p) % p + p) % p ;
if (mp.count(tmp) == true)
res += mp[tmp];
++mp[tmp];
}
printf("%I64d\n", res);
return 0;
}

[CF1188B]Count Pairs 题解的更多相关文章

  1. CF1188B Count Pairs

    [题目描述] 给定一个质数 \(p\) , 一个长度为 \(n\)n 的序列 \(a = \{ a_1,a_2,\cdots,a_n\}\)一个整数 \(k\). 求所有数对 \((i, j)\) ( ...

  2. [MeetCoder] Count Pairs

    Count Pairs Description You are given n circles centered on Y-aixs. The ith circle’s center is at po ...

  3. CodeForces - 1189E Count Pairs(平方差)

    Count Pairs You are given a prime number pp, nn integers a1,a2,…,ana1,a2,…,an, and an integer kk. Fi ...

  4. CF1188B/E Count Pairs(数学)

    数同余的个数显然是要把\(i,j\)分别放到\(\equiv\)的两边 $ (a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p $ 左右两边乘上\((a_i-a_j ...

  5. [LeetCode]Swap Nodes in Pairs题解

    Swap Nodes in Pairs: Given a linked list, swap every two adjacent nodes and return its head. For exa ...

  6. CodeForces - 1189 E.Count Pairs (数学)

    You are given a prime number pp, nn integers a1,a2,…,ana1,a2,…,an, and an integer kk. Find the numbe ...

  7. Codeforces 1188B - Count Pairs(思维题)

    Codeforces 题面传送门 & 洛谷题面传送门 虽说是一个 D1B,但还是想了我足足 20min,所以还是写篇题解罢( 首先注意到这个式子里涉及两个参数,如果我们选择固定一个并动态维护另 ...

  8. Codeforces 1189E. Count Pairs

    传送门 可以算是纯数学题了吧... 看到这个 $(x+y)(x^2+y^2)$ 就可以想到化简三角函数时经常用到的操作,左右同乘 那么 $(a_i+a_j)(a_i^2+a_j^2) \equiv  ...

  9. Codeforces 1188B Count Pairs (同余+分离变量)

    题意: 给一个3e5的数组,求(i,j)对数,使得$(a_i+a_j)(a_i^2+a_j^2)\equiv k\ mod\ p$ 思路: 化简$(a_i^4-a_j^4)\equiv k(a_i-a ...

随机推荐

  1. 《剑指offer》面试题27 二叉搜索树与双向链表 Java版

    (将BST改成排序的双向链表.) 我的方法一:根据BST的性质,如果我们中序遍历BST,将会得到一个从小到大排序的序列.如果我们将包含这些数字的节点连接起来,就形成了一个链表,形成双向链表也很简单.关 ...

  2. [多校联考2019(Round 5 T2)]蓝精灵的请求(二分图染色+背包)

    [多校联考2019(Round 5)]蓝精灵的请求(二分图染色+背包) 题面 在山的那边海的那边住着 n 个蓝精灵,这 n 个蓝精灵之间有 m 对好友关系,现在蓝精灵们想要玩一个团队竞技游戏,需要分为 ...

  3. python中django中间件

    一.中间件 所谓的中间件,就是存在socket和视图函数中间的一种相当于过滤的机构. 中间件共分为: (1)process_request(self,request) (2)process_view( ...

  4. kotlin学习(8)泛型

    泛型的声明 与Java不同的是,Kotlin要求类型实参要么被显示的说明,要么能被编译器推导出来.因为Java在1.5版本才引入泛型,所以为了兼容过去的版本,可以不直接声明List类型的变量,而不说明 ...

  5. git命令?

    #文件及文件夹创建删除    mkdir  文件名称    (创建文件夹)    touch  文件名称    (创建文件)    rm -r  文件名称     (递归删除)    rm -rf 文 ...

  6. 细说SQL Server数据类型

    1.字符型 char 定长,查询速度快,最大8000字符(非unicode编码) ) '小明' 前四个字符存放‘小明’,后添6个空格补全 varchar 变长,最大8000字符(非unicode编码) ...

  7. Redis数据类型及基本命令

    一.基础命令 提示:Redis不区分命令大小写 1.获得符合规则的键名列表 keys pattern    //pattern支持glob风格通配符格式 2.判断一个键是否存在 exists key  ...

  8. javascript 输入框监听事件

    <div class="coupon-exchange clearfix"> <div class="code-input"> < ...

  9. python基础知识之数据类型

    一.与用户的交互 古时候,我们去银行取钱,需要有一个银行业务员等着我们把自己的账号密码输入给他, 然后他去进行验证,成功后,我们再将取款金额输入/告诉他 骄傲的现代人,会为客户提供一台ATM机(就是一 ...

  10. STM32 总线

    AHB,是Advanced High performance Bus的缩写,译作高级高性能总线,这是一种“系统总线”.AHB主要用于高性能模块(如CPU.DMA和DSP等)之间的连接.AHB 系统由主 ...