【BZOJ1049】【Luogu P2501】 [HAOI2006]数字序列 DP,结论,LIS
很有(\(bu\))质(\(hui\))量(\(xie\))的一个题目。
第一问:求最少改变几个数能把一个随机序列变成单调上升序列。
\(Solution:\)似乎是一个结论?如果两个数\(A_i\)和\(A_j\)可以保留(\(i > j, A_i > A_j\)),即中间其他数都可以通过修改成为\([A_i, A_j]\)区间内的一个数,那么一定有\(i - j <= A_i - A_j\),即\(A_i - i >= A_j - j\)。这个东西我们可以设为数列\(B\),求一个最长不下降子序列就可以了。
(其实我中间智障了写成了最长上升子序列居然还有\(90ptshhhhh\))
第二问:结论看这里。有了第一问的铺垫其实并不难想,但是问题在于可以有很多种最长不下降子序列,该怎么办?
我们考虑对答案\(DP\),设\(f_x\)为前\(x\)个数有序化的最小代价(其中\(x\)一定是一个子序列内的点),然后来一发轻松愉快的\(DP\)。由于数据完全随机,所以可以剪枝过去。(虽然就是不随机恐怕也很难卡满就是了\(QwQ\))
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 35000 + 5;
const int INF = 0x3f3f3f3f;
int n, A[N], B[N], Longest[N];
vector <int> q, G[N];
vector <int> :: iterator it;
int solve1 () {
for (int i = 1; i <= n + 1; ++i) {
if (q.empty () || B[i] >= q[q.size () - 1]) {
q.push_back (B[i]); Longest[i] = q.size ();
} else {
it = upper_bound (q.begin (), q.end (), B[i]);
*it = B[i]; Longest[i] = it - q.begin () + 1;
}
G[Longest[i]].push_back (i);
}
// Longest[i] : 以 i 结尾的最长不下降子序列
return q.size () - 1; // 可以保留的数的个数
}
int dp[N], hl[N], hr[N]; // hl[i] -> 从 l 到 i 都选择变成左端点值的代价, hr 同理
int solve2 () {
memset (dp, 0x3f, sizeof (dp));
dp[0] = 0; G[0].push_back (0);
for (int v = 1; v <= n + 1; ++v) {
for (int i = 0; i < G[Longest[v] - 1].size (); ++i) {
int u = G[Longest[v] - 1][i];
// cout << "u = " << u << " v = " << v << endl;
if (v < u || B[v] < B[u]) continue;
hl[u] = hr[v] = 0;
for (int k = u + 1; k < v; ++k) {
hl[k] = hl[k - 1] + abs (B[k] - B[u]);
}
for (int k = v - 1; k > u; --k) {
hr[k] = hr[k + 1] + abs (B[k] - B[v]);
}
for (int k = u; k < v; ++k) {
dp[v] = min (dp[v], dp[u] + hl[k] + hr[k + 1]);
}
}
}
return dp[n + 1];
}
signed main () {
// freopen ("data.in", "r", stdin);
// freopen ("data.out", "w", stdout);
cin >> n;
B[0] = -INF, B[n + 1] = INF;
for (int i = 1; i <= n; ++i) {
cin >> A[i]; B[i] = A[i] - i;
}
cout << n - solve1 () << endl; // 对数列 B 做最长不下降子序列
cout << solve2 () << endl; // ans
}
【BZOJ1049】【Luogu P2501】 [HAOI2006]数字序列 DP,结论,LIS的更多相关文章
- 2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS)
2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS) https://www.luogu.com.cn/problem/P2501 题意: 现在我们有一个长度为 n 的整 ...
- Luogu P2501 [HAOI2006]数字序列
题目 首先把\(a\)改成严格单调上升等于把\(a_i-i\)改成单调不降. 那么第一问可以直接做LIS,答案就是\(n-\)LIS的长度. 同时我们记录一下序列中每个位置结尾的LIS长度. 第二问我 ...
- 洛谷 P2501 [HAOI2006]数字序列 解题报告
P2501 [HAOI2006]数字序列 题目描述 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. ...
- BZOJ1049:[HAOI2006]数字序列(DP)
Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列. 但是不希望改变过多的数,也不希望改变的幅度太大. Input 第一行包含一个 ...
- P2501 [HAOI2006]数字序列 (LIS,DP)(未完成)
第二问好迷... #include "Head.cpp" #include <vector> const int N = 35007; vector<int> ...
- p2501 [HAOI2006]数字序列
传送门 分析 https://www.luogu.org/blog/FlierKing/solution-p2501 对于第二问的感性理解就是有上下两条线,一些点在上面的线的上面或者下面的线的下面,然 ...
- [luogu2501 HAOI2006] 数字序列 (递推LIS)
题目描述 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. 输入输出格式 输入格式: 第一行包含一个数 ...
- 【BZOJ1049】 [HAOI2006]数字序列
BZOJ1049 [HAOI2006]数字序列 dp好题? 第一问 第一问我会做!令\(b_i=a_i-i\),求一个最长不下降子序列. \(n-ans\)就是最终的答案. 第二问 好难啊.不会.挖坑 ...
- bzoj 1049 [HAOI2006]数字序列
[bzoj1049][HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不 ...
随机推荐
- 升级Nginx1.14.1以上版本
一.编译Nginx ①.下载Nginx最新版 目前Nginx最新版是今年11月份发布的 1.9.7 版本,反正1.9+是没有稳定版,所以干脆弄个最新版: cd /usr/local/src w ...
- 【UVA - 1644 / POJ - 3518】Prime Gap(水题)
Prime Gap 这里直接写中文了 Descriptions: 对于一个数n,若n为素数则输出0,否则找到距离n最小的两个素数,一个大于n,一个小于n,输出他们的差(正数) Input 多组输入 每 ...
- 【Python开发】Python:itertools模块
Python:itertools模块 itertools模块包含创建有效迭代器的函数,可以用各种方式对数据进行循环操作,此模块中的所有函数返回的迭代器都可以与for循环语句以及其他包含迭代器(如生成器 ...
- npm install 报 128 错误
[问题描述] 项目执行npm install的时候特别慢,到最后直接返回错误: verbose exit [ 1, true ] [解决方法] 执行以下两条命令: git config --globa ...
- mybatis-sql执行流程源码分析
1. SqlSessionFactory 与 SqlSession. 通过前面的章节对于mybatis 的介绍及使用,大家都能体会到SqlSession的重要性了吧, 没错,从表面上来看,咱们都是通过 ...
- linux shell脚本中使用expect(脚本打开新终端自动远程连接顺便输一点指令)(巨坑)
放弃吧 我找了六个小时都没找到可以用的方案(指标题括号里的内容) 给个曲线救国的方法: 现把expect脚本写成一个文件 在另一个shell脚本中调用
- # 模乘(解决乘法取模爆long long)
模乘(解决乘法取模爆long long) 二进制思想,变乘法为多次加法,具体思想跟着代码手算一遍就理解了,挺简单的 ll qmul(ll a,ll b,ll m) { ll ans=0; while( ...
- C++ 友元(friend关键字)、类中的重载、操作符重载(operator关键字)
C++ 中友元的用法: 1.在类中使用friend关键字声明 2.类的友元可以是其它类或者具体函数 3.友元不是类的一部分 4.友元不受类中访问级别的限制 5.友元可以直接访问具体类中的所有成员. 友 ...
- (转载)sublime3安装markdown插件
原文链接 http://www.jianshu.com/p/335b7d1be39e?utm_source=tuicool&utm_medium=referral 最近升级到了 Sublime ...
- JS基础_标识符
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...