【CF321E】+【bzoj5311】贞鱼
决策单调性 + WQS二分
我们首先列出转移式: \(f[i]=Min(f[j]+Sum[j+1 , i])\)
首先我们考虑如果让一段区间的小鱼在一起的代价怎么预处理,我们可以对于一个上三角矩阵求个二维前缀和,那么我们计算 \([j+1,i]\) 这段区间的代价就是 \(S[i,i]-S[i,j]\) ,得到的是一个等腰直角三角形的和
那么原来的转移式就可以这么写:\(f[i]=Min(f[j]+S[i,i]-S[i,j])\)
然后我们不考虑车辆数量的限制,那么对于 j 和 k ,如果 \(j<k\) ,那么首先 \(f[j]\) 必然小于 \(f[k]\) ,但是随着 i 的增大, \(S[i,i]\) 是不变的,但是 \(S[i,j]\) 和 \(S[i,k]\) 之间的差肯定是越来越大的,即对于 \(f[j]-S[i,j]\) 和 \(f[k]-S[i,k]\) ,肯定是一开始选 j 比较优,后来两个函数有一个交点,过了这个交点就是 k 比较优了,并且两个函数的交点只有一个,所以我们可以二分一个交点,然后保持交点和 j 同时单调递增,这样就可以做一个 O(n) 的斜率优化 dp 了...
但问题是这 goushi 的车辆是有数量限制的,但是我们发现总价格和使用车辆数是负相关的,那么我们可以考虑对于每辆车加上一个租赁代价,这在斜率优化中是不影响计算的,然后租赁的代价越高,最优解中使用车辆数肯定越小,那么我们可以二分这个租赁代价,得到车辆数恰好为指定的 K 时,把租赁的代价减去,这样就得到了答案
总复杂度讲道理是 \(O(n~log n ~ log ~S[n,n])\) ,因为外面 wqs 二分 \(S[n,n]\),里面也要二分交点
code
//by Judge
#pragma GCC optimize("Ofast")
#include<bits/stdc++.h>
#define Rg register
#define fp(i,a,b) for(Rg int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(Rg int i=(a),I=(b)-1;i>I;--i)
#define ll long long
using namespace std;
const int M=4003;
#ifndef Judge
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
#endif
char buf[1<<21],*p1=buf,*p2=buf;
inline ll read(){ ll x=0,f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0'; return x*f;
} int n,K,ans,s[M][M],f[M],w[M];
inline int calc(int j,int i){
return f[j]+s[i][i]-s[j][i];
}
inline bool judge(int j,int k,int i){ //判断 f[i] 大小
int valj=calc(j,i),valk=calc(k,i);
if(valj^valk) return valj>valk;
return w[j]>=w[k];
}
inline int rate(int j,int k){ //得到交点位置
int l=k+1,r=n;
while(l<=r){
int mid=(l+r)>>1;
if(judge(j,k,mid)) r=mid-1;
else l=mid+1;
} return l;
}
inline bool check(int mid){ //二分附加权值
static int head,tail,q[M];
q[head=tail=1]=0;
fp(i,1,n){ //斜率优化
while(head<tail&&judge(q[head],q[head+1],i)) ++head;
f[i]=calc(q[head],i)+mid,w[i]=w[q[head]]+1;
while(head<tail&&rate(q[tail-1],q[tail])>rate(q[tail],i)) --tail; q[++tail]=i;
} return w[n]<=K;
}
int main(){ n=read(),K=read();
fp(i,1,n) fp(j,1,n) s[i][j]=read();
fp(i,1,n) fp(j,1,i) s[i][j]=0;
fp(i,1,n) fp(j,1,n) s[i][j]=s[i][j-1]+s[i][j];
fp(i,1,n) fp(j,1,n) s[i][j]=s[i-1][j]+s[i][j];
int l=0,r=s[n][n];
while(l<=r){ int mid=(l+r)>>1;
if(check(mid)) r=mid-1,ans=f[n]-K*mid;
else l=mid+1;
} return !printf("%d\n",ans);
}
【CF321E】+【bzoj5311】贞鱼的更多相关文章
- 【BZOJ5311/CF321E】贞鱼/Ciel and Gondolas(动态规划,凸优化,决策单调性)
[BZOJ5311/CF321E]贞鱼/Ciel and Gondolas(动态规划,凸优化,决策单调性) 题面 BZOJ CF 洛谷 辣鸡BZOJ卡常数!!!!!! 辣鸡BZOJ卡常数!!!!!! ...
- [CF321E]Ciel and Gondolas&&[BZOJ5311]贞鱼
codeforces bzoj description 有\(n\)个人要坐\(k\)辆车.如果第\(i\)个人和第\(j\)个人同坐一辆车,就会产生\(w_{i,j}\)的代价. 求最小化代价.\( ...
- BZOJ5311 贞鱼(动态规划+wqs二分+决策单调性)
大胆猜想答案随k变化是凸函数,且有决策单调性即可.去粘了份fread快读板子才过. #include<iostream> #include<cstdio> #include&l ...
- bzoj5311: 贞鱼
还是年轻啊算的时候少乘一个4000被卡二分上界了...%%%%bright教我超级快速读D飞bzoj垃圾卡常数据 我们容易写出这样的DP方程:f[i][j]=f[k][j-1]+val(k+1,j) ...
- BZOJ5311,CF321E 贞鱼
题意 Problem 5311. -- 贞鱼 5311: 贞鱼 Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 677 Solved: 150[Subm ...
- ROJ 1166 超级贞鱼
1166: 超级贞鱼 Time Limit: 1 Sec Memory Limit: 128 MB [Submit][Status] 传送门 Description 马达加斯加贞鱼是一种神奇的双脚贞 ...
- 【Codeforces 321E / BZOJ 5311】【DP凸优化】【单调队列】贞鱼
目录 题意: 输入格式 输出格式 思路: DP凸优化的部分 单调队列转移的部分 坑点 代码 题意: 有n条超级大佬贞鱼站成一行,现在你需要使用恰好k辆车把它们全都运走.要求每辆车上的贞鱼在序列中都是连 ...
- bzoj 4769: 超级贞鱼 -- 归并排序
4769: 超级贞鱼 Time Limit: 1 Sec Memory Limit: 128 MB Description 马达加斯加贞鱼是一种神奇的双脚贞鱼,它们把自己的智慧写在脚上——每只贞鱼的 ...
- 【BZOJ4769】超级贞鱼 归并排序求逆序对
[BZOJ4769]超级贞鱼 Description 马达加斯加贞鱼是一种神奇的双脚贞鱼,它们把自己的智慧写在脚上——每只贞鱼的左脚和右脚上各有一个数.有一天,K只贞鱼兴致来潮,排成一列,从左到右第i ...
- 贞鱼传教&&贞鱼传教(数据加强版)
http://acm.buaa.edu.cn/problem/1381/ 贞鱼传教[问题描述] 新的一年到来了,贞鱼哥决定到世界各地传授“贞教”,他想让“贞教”在2016年成为世界第四大宗教.说干就干 ...
随机推荐
- Apache+Mysql+PHP 套件
Apache+Mysql+PHP 套件 最近要装个Apache+Mysql+PHP的一个环境. google下后,发现现在的安装变得越来越简单了.不再需要麻烦的配置安装,只需简单执行个sh就搞定了 ...
- Flask之 请求,应用 上下文源码解析
什么是上下文? 每一段程序都有很多外部变量.只有像Add这种简单的函数才是没有外部变量的.一旦你的一段程序有了外部变量,这段程序就不完整,不能独立运行.你为了使他们运行,就要给所有的外部变量一个一个写 ...
- Java_环境变量
介绍 第一步:下载JDK 第二步:搭建环境,双击JDK安装程序 第三步:配置环境变量 第四步:检查JDK安装是否成功 介绍: .java 源文件 我们所编写的代码都在这个文件中 .class 字节码文 ...
- 《SaltStack技术入门与实践》—— Mine
Mine 本章节参考<SaltStack技术入门与实践>,感谢该书作者: 刘继伟.沈灿.赵舜东 Mine是SaltStack收集Minion数据存储到Master的一个组件,它的功能与Gr ...
- 【GDOI 2016 Day2】第一题 SigemaGO
题目 分析 拆点连边+spfa. 首先把图分成2lim+1层,也就是每个点拆成2lim+1个点. 如果a和b之间.b和c有一条有向边,那么连边(k,a)-->(k+1,b),(k+1,b)--& ...
- 【leetcode】698. Partition to K Equal Sum Subsets
题目如下: 解题思路:本题是[leetcode]473. Matchsticks to Square的姊妹篇,唯一的区别是[leetcode]473. Matchsticks to Square指定了 ...
- KCF跟踪算法
参考:https://www.cnblogs.com/YiXiaoZhou/p/5925019.html 参考:https://blog.csdn.net/shenxiaolu1984/article ...
- 什么是npm ? 什么是node ? 什么是vue-cli ?什么是webpack ?
- mysql DELETE语句 语法
mysql DELETE语句 语法 作用:用于删除表中的行.广东大理石构件 语法:DELETE FROM 表名称 WHERE 列名称 = 值 mysql DELETE语句 示例 //删除person表 ...
- UOJ428. 【集训队作业2018】普通的计数题
http://uoj.ac/problem/428 题解 神仙题. 考虑最后一定是放了一个\(1\),然后把其他位置都删掉了. 再考虑到对于序列中的每个位置都对应了一次操作. 我们可以对于每个放\(1 ...