pandas中数据结构-Series
pandas中数据结构-Series
pandas简介
Pandas是一个开源的,BSD许可的Python库,为Python编程语言提供了高性能,易于使用的数据结构和数据分析工具。Python与Pandas一起使用的领域广泛,包括学术和商业领域,包括金融,经济学,统计学,分析等。在本教程中,我们将学习PythonPandas的各种功能以及如何在实践中使用它们。
pandas安装
安装
pip install pandas
导入
import pandas as pd
from pandas import Series, DataFrame
Series介绍
Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。仅由一组数据即可产生最简单的Series:
>>> import pandas as pd
>>> obj=pd.Series([4,7,-5,3])
>>> obj
0 4
1 7
2 -5
3 3
dtype: int64
Series的组成
Series的字符串表现形式为:索引在左边,值在右边。由于我们没有为数据指定索引,于是会自动创建一个0到N-1(N为数据的长度)的整数型索引。你可以通过Series 的values和index属性获取其数组表示形式和索引对象:
- 索引
- 值
>>> import pandas as pd
>>> obj.values
array([ 4, 7, -5, 3], dtype=int64)
>>> obj.index
RangeIndex(start=0, stop=4, step=1)
Series自定义索引
通常,我们希望所创建的Series带有一个可以对各个数据点进行标记的索引:索引和值是一一对应的关系
>>> obj2=pd.Series([4,7,-5,3],index=['d','b','a','c'])
>>> obj2
d 4
b 7
a -5
c 3
dtype: int64
Series通过索引来获取值
>>> obj2['a']
-5
>>> obj2['d']
4
>>> obj2['c','a','d']
>>> obj2[['c','a','d']]
c 3
a -5
d 4
dtype: int64
Series运算
>>> obj2[obj2>0]
d 4
b 7
c 3
dtype: int64
>>> obj2*2
d 8
b 14
a -10
c 6
dtype: int64
>>> import numpy as np
>>> np.exp(obj2)
d 54.598150
b 1096.633158
a 0.006738
c 20.085537
dtype: float64
Series和字典的关系
还可以将Series看成是一个定长的有序字典,因为它是索引值到数据值的一个映射。它可以用在许多原本需要字典参数的函数中:
判断索引是否存在
>>> 'b' in obj2
True
>>> 'e' in obj2
False
根据字典来创建
1.传入一个字典来创建一个Series
>>> sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
>>> obj3=pd.Series(sdata)
>>> obj3
Ohio 35000
Texas 71000
Oregon 16000
Utah 5000
dtype: int64
2.传入新的索引来改变字典的顺序
由于新增的California没有值与它对应,所以表示数据缺失
>>> states = ['California', 'Ohio', 'Oregon', 'Texas']
>>> obj4 = pd.Series(sdata, index=states)
>>> obj4
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64
3.检测数据的缺失
>>> pd.isnull(obj4)
California True
Ohio False
Oregon False
Texas False
dtype: bool
>>> pd.notnull(obj4)
California False
Ohio True
Oregon True
Texas True
dtype: bool
Series利用索引标签对齐数据
简单的说就是对应索引的值相加
>>> obj3
Ohio 35000
Texas 71000
Oregon 16000
Utah 5000
dtype: int64
>>> obj4
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64
>>> obj3+obj4
California NaN
Ohio 70000.0
Oregon 32000.0
Texas 142000.0
Utah NaN
dtype: float64
Series修改name值
>>> obj4.name='population'
>>> obj4.index.name='state'
>>> obj4
state
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
Name: population, dtype: float64
Series通过赋值修改索引
>>> obj
0 4
1 7
2 -5
3 3
dtype: int64
>>> obj.index=['Bob','Steve','Jeff','Ryan']
>>> obj
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64
pandas中数据结构-Series的更多相关文章
- 02. Pandas 1|数据结构Series、Dataframe
1."一维数组"Series Pandas数据结构Series:基本概念及创建 s.index . s.values # Series 数据结构 # Series 是带有标签的一 ...
- pandas 的数据结构Series与DataFrame
pandas中有两个主要的数据结构:Series和DataFrame. [Series] Series是一个一维的类似的数组对象,它包含一个数组数据(任何numpy数据类型)和一个与数组关联的索引. ...
- pandas中的series数据类型
import pandas as pd import numpy as np import names ''' 写在前面的话: 1.series与array类型的不同之处为series有索引,而另一个 ...
- pandas中的Series
我们使用pandas经常会用到其下面的一个类:Series,那么这个类都有哪些方法呢?另外Series和DataFrame都继承了NDFrame这个类,df.to_sql()这个方法其实就是NDFra ...
- Pandas 0 数据结构Series
# -*- encoding:utf-8 -*- # Copyright (c) 2015 Shiye Inc. # All rights reserved. # # Author: ldq < ...
- numpy中的ndarray与pandas中的series、dataframe的转换
一个ndarray是一个多维同类数据容器.每一个数组有一个dtype属性,用来描述数组的数据类型. Series是一种一维数组型对象,包含了一个值序列,并且包含了数据标签----索引(index). ...
- Python之Pandas中Series、DataFrame
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...
- Python之Pandas中Series、DataFrame实践
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...
- pandas的数据结构之series
Pandas的数据结构 1.Series Series是一种类似于一维数组的对象,由下面两个部分组成: index:相关的数据索引标签 values:一组数据(ndarray类型) series的创建 ...
随机推荐
- SpringBoot2.0集成Shiro
1.shiro的三个核心概念: 1)Subject:代表当前正在执行操作的用户,但Subject代表的可以是人,也可以是任何第三方系统帐号.当然每个subject实例都会被绑定到SercurityMa ...
- jquery pageX属性 语法
jquery pageX属性 语法 作用:pageX() 属性是鼠标指针的位置,相对于文档的左边缘. 语法:event.page 参数: 参数 描述 event 必需.规定要使用的事件.这个 ...
- 大视频上传T级别解决方案
核心原理: 该项目核心就是文件分块上传.前后端要高度配合,需要双方约定好一些数据,才能完成大文件分块,我们在项目中要重点解决的以下问题. * 如何分片: * 如何合成一个文件: * 中断了从哪个分片开 ...
- poj 3579 Median 二分套二分 或 二分加尺取
Median Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5118 Accepted: 1641 Descriptio ...
- Lucas定理初探
1.1 问题引入 已知\(p\)是一质数,求\(\dbinom{n}{m}\pmod{p}\). 关于组合数,它和排列数都是组合数学中的重要概念.这里会张贴有关这两个数的部分内容. 由于Lucas定理 ...
- C++自动糖果贩卖机
#include<map> #include<vector> #include<cstdio> #include<iostream> #include& ...
- fiddler(一)、下载及安装
fiddler 官网地址:https://www.telerik.com/fiddler 进入页面后点击 Free download 进入下载页面,填写用途,邮箱和国家等信息后,点击Download ...
- 消息队列rabbitmq/kafka
12.1 rabbitMQ 1. 你了解的消息队列 rabbitmq是一个消息代理,它接收和转发消息,可以理解为是生活的邮局.你可以将邮件放在邮箱里,你可以确定有邮递员会发送邮件给收件人.概括:rab ...
- docker容器的学习
什么是docker Docker 最初是 dotCloud 公司创始人 Solomon Hykes 在法国期间发起的一个公司内部项目,于 2013 年 3 月以 Apache 2.0 授权协议开源 ...
- Tracer使用
1.选择event List可以迅速完成操作,而选择simulation就会一步一步地执行操作,但是如果都点了下方的Delete删了记录的话,所有的机器都是该整个流程执行完毕的结果.