Description

In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws.

Input

Input consist multiple case,each case consists of multiple lines. The first line will be an integer n (1 < n < 13) giving the number of straws on the table. Each of the next n lines contain 4 positive integers,x1,y1,x2 and y2, giving the coordinates, (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 1 and n, inclusive. You are to determine if straw a can be connected to straw b. When a = 0 = b, the current case is terminated.

When n=0,the input is terminated.

There will be no illegal input and there are no zero-length straws.

Output

You
should generate a line of output for each line containing a pair a and
b, except the final line where a = 0 = b. The line should say simply
"CONNECTED", if straw a is connected to straw b, or "NOT CONNECTED", if
straw a is not connected to straw b. For our purposes, a straw is
considered connected to itself.

Sample Input

7
1 6 3 3
4 6 4 9
4 5 6 7
1 4 3 5
3 5 5 5
5 2 6 3
5 4 7 2
1 4
1 6
3 3
6 7
2 3
1 3
0 0
2
0 2 0 0
0 0 0 1
1 1
2 2
1 2
0 0
0

Sample Output

CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
CONNECTED
CONNECTED

Source

East Central North America 1994

判断两线段是否相交,直接上模板。

先用并查集预处理好两线段相交,最后判断两两是否在同一个集合就可以了。

 #include <stdio.h>
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps) int cnt;
int lis[];
struct Point{
double x;
double y;
};
struct Line{
Point a1;
Point a2;
}ll[]; double xmult(Point p1, Point p2, Point p0){
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
} int dots_inline(Point p1, Point p2, Point p3){
return zero(xmult(p1,p2,p3));
} int dot_online_in(Point p,Line l){
return zero(xmult(p,l.a1,l.a2))&&(l.a1.x-p.x)*(l.a2.x-p.x)<eps
&&(l.a1.y-p.y)*(l.a2.y-p.y)<eps;
} int same_side(Point p1,Point p2,Line l){
return xmult(l.a1,p1,l.a2)*xmult(l.a1,p2,l.a2)>eps;
} int intersect_in(Line u, Line v){
if(!dots_inline(u.a1,u.a2,v.a1)||!dots_inline(u.a1,u.a2,v.a1)){
return !same_side(u.a1,u.a2,v)&&!same_side(v.a1,v.a2,u);
}
return dot_online_in(u.a1,v)||dot_online_in(u.a2,v)||
dot_online_in(v.a1,u)||dot_online_in(v.a1,u);
} void set(){
for(int i=; i<=cnt; i++){
lis[i]=i;
}
} int find(int u){
while(lis[u]!=u){
u=lis[u];
}
return u;
} int main(int argc, char *argv[])
{
while( scanf("%d",&cnt)!=EOF && cnt ){
for(int i=; i<=cnt; i++){
scanf("%lf %lf %lf %lf",&ll[i].a1.x ,&ll[i].a1.y ,&ll[i].a2.x ,&ll[i].a2.y);
}
set();
for(int i=; i<=cnt; i++){
for(int j=i+; j<=cnt; j++){
if(intersect_in(ll[i], ll[j])){
int tx=find(i);
int ty=find(j);
if(tx!=ty)
lis[tx]=ty;
}
}
}
int u,v;
while( scanf("%d %d" ,&u ,&v)!=EOF ){
if(u==&& v==)break;
if(find(u)==find(v))
puts("CONNECTED");
else
puts("NOT CONNECTED");
}
}
return ;
}

TOJ 1840 Jack Straws的更多相关文章

  1. 1840: Jack Straws

    1840: Jack Straws 时间限制(普通/Java):1000MS/10000MS     内存限制:65536KByte 总提交: 168            测试通过:129 描述 I ...

  2. TZOJ 1840 Jack Straws(线段相交+并查集)

    描述 In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the ta ...

  3. TOJ1840: Jack Straws 判断两线段相交+并查集

    1840: Jack Straws  Time Limit(Common/Java):1000MS/10000MS     Memory Limit:65536KByteTotal Submit: 1 ...

  4. poj1127 Jack Straws(线段相交+并查集)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Jack Straws Time Limit: 1000MS   Memory L ...

  5. Jack Straws(poj 1127) 两直线是否相交模板

    http://poj.org/problem?id=1127   Description In the game of Jack Straws, a number of plastic or wood ...

  6. poj 1127:Jack Straws(判断两线段相交 + 并查集)

    Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2911   Accepted: 1322 Descr ...

  7. Jack Straws POJ - 1127 (简单几何计算 + 并查集)

    In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table ...

  8. Jack Straws POJ - 1127 (几何计算)

    Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5428   Accepted: 2461 Descr ...

  9. poj 1127 -- Jack Straws(计算几何判断两线段相交 + 并查集)

    Jack Straws In the game of Jack Straws, a number of plastic or wooden "straws" are dumped ...

随机推荐

  1. IOC AOP 设计模式

    IOC AOP 不是什么技术而是一种设计模式  学习 IOC AOP 其实是在学习一种思想. 1.IOC IOC其实是 将对象的创建和获取提取到外部.由外部IOC容器提供需要的组件. 看下面代码: p ...

  2. angular ng-content

    <p> child works! </p> <ng-content></ng-content> <app-child> 父组件投影 < ...

  3. 【连载】redis库存操作,分布式锁的四种实现方式[二]--基于Redisson实现分布式锁

    一.redisson介绍 redisson实现了分布式和可扩展的java数据结构,支持的数据结构有:List, Set, Map, Queue, SortedSet, ConcureentMap, L ...

  4. leecode刷题(3)-- 旋转数组

    leecode刷题(3)-- 旋转数组 旋转数组 给定一个数组,将数组中的元素向右移动 K 个位置,其中 K 是非负数. 示例: 输入: [1,2,3,4,5,6,7] 和 k = 3 输出: [5, ...

  5. 基于 Django 的手机管理系统

    前段时间和小组一起完成数据库作业,觉得收获挺多的,分享到博客来. 一.概述 打算通过设计数据库,然后结合 Python 框架Django,实现在网页上对数据库的增删改查(本例以手机的管理为例,不考虑订 ...

  6. js闭包引起的事件注册问题

    背景:闲暇时间看了几篇关于js作用域链与闭包的文章,偶然又看到了之前遇到的一个问题,就是在for循环中为dom节点注册事件驱动,具体见下面代码: <!DOCTYPE html> <h ...

  7. Squid代理服务器(一)——大家所用的游戏代理软件到底为何物?

    一.代理服务器应用场景分析 想当年大学时候宿舍控制网速,苦了我们这帮魔兽党,一到晚上工会活动我们就得和全校上万名学生抢网速,作为坦克的我总是因为网速问题导致团灭,咱也是有自尊的人,一怒之下花300元办 ...

  8. 有关git的使用,和git的一些提交冲突。

    git 的一些基本用法 git init :初始化文件(创建文件夹). git add . :监控工作区的状态树(将被修改的文件提交到暂存区) git status :未跟踪状态(Untracked) ...

  9. SDUT OJ 学密码学一定得学程序

    学密码学一定得学程序 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Problem Description ...

  10. SDUT OJ 数据结构实验之链表二:逆序建立链表

    数据结构实验之链表二:逆序建立链表 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Problem Descr ...