Description

In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws.

Input

Input consist multiple case,each case consists of multiple lines. The first line will be an integer n (1 < n < 13) giving the number of straws on the table. Each of the next n lines contain 4 positive integers,x1,y1,x2 and y2, giving the coordinates, (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 1 and n, inclusive. You are to determine if straw a can be connected to straw b. When a = 0 = b, the current case is terminated.

When n=0,the input is terminated.

There will be no illegal input and there are no zero-length straws.

Output

You
should generate a line of output for each line containing a pair a and
b, except the final line where a = 0 = b. The line should say simply
"CONNECTED", if straw a is connected to straw b, or "NOT CONNECTED", if
straw a is not connected to straw b. For our purposes, a straw is
considered connected to itself.

Sample Input

7
1 6 3 3
4 6 4 9
4 5 6 7
1 4 3 5
3 5 5 5
5 2 6 3
5 4 7 2
1 4
1 6
3 3
6 7
2 3
1 3
0 0
2
0 2 0 0
0 0 0 1
1 1
2 2
1 2
0 0
0

Sample Output

CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
CONNECTED
CONNECTED

Source

East Central North America 1994

判断两线段是否相交,直接上模板。

先用并查集预处理好两线段相交,最后判断两两是否在同一个集合就可以了。

 #include <stdio.h>
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps) int cnt;
int lis[];
struct Point{
double x;
double y;
};
struct Line{
Point a1;
Point a2;
}ll[]; double xmult(Point p1, Point p2, Point p0){
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
} int dots_inline(Point p1, Point p2, Point p3){
return zero(xmult(p1,p2,p3));
} int dot_online_in(Point p,Line l){
return zero(xmult(p,l.a1,l.a2))&&(l.a1.x-p.x)*(l.a2.x-p.x)<eps
&&(l.a1.y-p.y)*(l.a2.y-p.y)<eps;
} int same_side(Point p1,Point p2,Line l){
return xmult(l.a1,p1,l.a2)*xmult(l.a1,p2,l.a2)>eps;
} int intersect_in(Line u, Line v){
if(!dots_inline(u.a1,u.a2,v.a1)||!dots_inline(u.a1,u.a2,v.a1)){
return !same_side(u.a1,u.a2,v)&&!same_side(v.a1,v.a2,u);
}
return dot_online_in(u.a1,v)||dot_online_in(u.a2,v)||
dot_online_in(v.a1,u)||dot_online_in(v.a1,u);
} void set(){
for(int i=; i<=cnt; i++){
lis[i]=i;
}
} int find(int u){
while(lis[u]!=u){
u=lis[u];
}
return u;
} int main(int argc, char *argv[])
{
while( scanf("%d",&cnt)!=EOF && cnt ){
for(int i=; i<=cnt; i++){
scanf("%lf %lf %lf %lf",&ll[i].a1.x ,&ll[i].a1.y ,&ll[i].a2.x ,&ll[i].a2.y);
}
set();
for(int i=; i<=cnt; i++){
for(int j=i+; j<=cnt; j++){
if(intersect_in(ll[i], ll[j])){
int tx=find(i);
int ty=find(j);
if(tx!=ty)
lis[tx]=ty;
}
}
}
int u,v;
while( scanf("%d %d" ,&u ,&v)!=EOF ){
if(u==&& v==)break;
if(find(u)==find(v))
puts("CONNECTED");
else
puts("NOT CONNECTED");
}
}
return ;
}

TOJ 1840 Jack Straws的更多相关文章

  1. 1840: Jack Straws

    1840: Jack Straws 时间限制(普通/Java):1000MS/10000MS     内存限制:65536KByte 总提交: 168            测试通过:129 描述 I ...

  2. TZOJ 1840 Jack Straws(线段相交+并查集)

    描述 In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the ta ...

  3. TOJ1840: Jack Straws 判断两线段相交+并查集

    1840: Jack Straws  Time Limit(Common/Java):1000MS/10000MS     Memory Limit:65536KByteTotal Submit: 1 ...

  4. poj1127 Jack Straws(线段相交+并查集)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Jack Straws Time Limit: 1000MS   Memory L ...

  5. Jack Straws(poj 1127) 两直线是否相交模板

    http://poj.org/problem?id=1127   Description In the game of Jack Straws, a number of plastic or wood ...

  6. poj 1127:Jack Straws(判断两线段相交 + 并查集)

    Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2911   Accepted: 1322 Descr ...

  7. Jack Straws POJ - 1127 (简单几何计算 + 并查集)

    In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table ...

  8. Jack Straws POJ - 1127 (几何计算)

    Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5428   Accepted: 2461 Descr ...

  9. poj 1127 -- Jack Straws(计算几何判断两线段相交 + 并查集)

    Jack Straws In the game of Jack Straws, a number of plastic or wooden "straws" are dumped ...

随机推荐

  1. delphi 金额大小写转换函数

    {*------------------------------------------------ 金额大小写转换函数 @author 王云盼 @version V1506.01 在delphi7测 ...

  2. Windows下配置Visualsvn Server时需要注意的几点事项

    1配置用户组与用户 用户组的权限高于用户的权限, 如果一个用户只有只读权限,同时被加入了拥有写权限的用户组中,此用户可以执行写操作. 2在Pre-commit hook下增加 强制添加注释的钩子脚本 ...

  3. angular 守卫路由

    import { NgModule } from '@angular/core'; import { Routes, RouterModule } from '@angular/router'; im ...

  4. c# 根据文件夹或文件名返回(文件夹或文件)的完整路径

    c#  根据文件夹或文件名返回(文件夹或文件)的完整路径 一.方案一:(使用windows API) 二.方案二:(扫描全盘)

  5. iOS APP打包上传到APPstore的最新步骤

    一.前言: 作为一名iOS开发者,把辛辛苦苦开发出来的App上传到App Store是件必要的事.但是很多人还是不知道该怎么上传到App Store上 下面就来详细讲解一下具体流程步骤. 二.准备: ...

  6. VSCode提示pylint isnot installed

    1.下载所需扩展 在https://www.lfd.uci.edu/~gohlke/pythonlibs/中下载所需扩展,我下载的是:pylint-2.1.1-py2.py3-none-any.whl ...

  7. 深入 Nginx:我们是如何为性能和规模做设计的

    NGINX 在网络应用中表现超群,在于其独特的设计.许多网络或应用服务器大都是基于线程或者进程的简单框架,NGINX突出的地方就在于其成熟的事件驱动框架,它能应对现代硬件上成千上万的并发连接. NGI ...

  8. bzoj 4182

    首先很容易看出这是一个树上多重背包问题 设状态$f[i][j]$表示以$i$为根的子树中利用的体积是$j$ 但是题目中有要求:选择的点集必须是一个联通块 这要怎么处理? 点分治! 首先我们利用点分治的 ...

  9. SDUT OJ 数据结构实验之串三:KMP应用

    数据结构实验之串三:KMP应用 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Problem Descrip ...

  10. SDUT OJ 数据结构实验之串二:字符串匹配

    数据结构实验之串二:字符串匹配 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Problem Descrip ...