Background

王7的生日到了,他的弟弟准备送他巧克力。

Description

有一个被分成n*m格的巧克力盒,在(i,j)的位置上有a[i,j]块巧克力。就在送出它的前一天晚上,有老鼠夜袭巧克力盒,某些位置上被洗劫并且穿了洞。所以,你——王7的弟弟王9,必须从这个满目苍夷的盒子中切割出一个矩形巧克力盒,其中不能有被老鼠洗劫过的格子且使这个盒子里的巧克力尽量多。

Input

第一行有两个整数 n、m。第 i+1行的第 j 个数表示a[ i , j ]。如果这个数为 0 ,则表示这个位置的格子被洗劫过。

Output

输出最大巧克力数。

表示很水的一个题.要不是数据有问题我就切了

悬线法+二维前缀和。吼啊

不过貌似比只写二维前缀和的麻烦一点.

我们预处理出来悬线法用的数组.(记得变一下限制条件.

然后真正做悬线法的时候.

我们可以得到一个合法矩形.

其左上角坐标,右下角坐标均可求.

然后用二维前缀和算一下即可.

PS:这题数据有问题,读入矩阵的时候要用\(cin\)

代码

#include<cstdio>
#include<algorithm>
#include<iostream>
#define R register
#define N 308
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,m,ans;
int res[N][N],sum[N][N];
int ri[N][N],le[N][N],up[N][N];
inline int calc(int a,int b,int c,int d)
{
return (sum[c][d]-sum[c][b-1]-sum[a-1][d]+sum[a-1][b-1]);
}
int main()
{
in(n),in(m);
for(R int i=1;i<=n;i++)
for(R int j=1;j<=m;j++)
{
cin>>res[i][j];
sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+res[i][j];
ri[i][j]=le[i][j]=j;
up[i][j]=1;
}
for(R int i=1;i<=n;i++)
for(R int j=2;j<=m;j++)
if(res[i][j] and res[i][j-1])
le[i][j]=le[i][j-1];
for(R int i=1;i<=n;i++)
for(R int j=m-1;j>=1;j--)
if(res[i][j] and res[i][j+1])
ri[i][j]=ri[i][j+1];
for(R int i=1;i<=n;i++)
for(R int j=1;j<=m;j++)
{
if(res[i][j] and res[i-1][j])
{
le[i][j]=max(le[i][j],le[i-1][j]);
ri[i][j]=min(ri[i][j],ri[i-1][j]);
up[i][j]=up[i-1][j]+1;
}
int a=i-up[i][j]+1,b=le[i][j],c=i,d=ri[i][j];
ans=max(ans,calc(a,b,c,d));
}
printf("%d",ans);
}

DP(悬线法)+二维前缀和【p2706】巧克力的更多相关文章

  1. P1169 [ZJOI2007]棋盘制作[悬线法/二维dp]

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...

  2. P4147 玉蟾宫 二维DP 悬线法

    题目背景 有一天,小猫rainbow和freda来到了湘西张家界的天门山玉蟾宫,玉蟾宫宫主蓝兔盛情地款待了它们,并赐予它们一片土地. 题目描述 这片土地被分成N*M个格子,每个格子里写着'R'或者'F ...

  3. BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )

    对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...

  4. P1169 [ZJOI2007]棋盘制作 DP悬线法

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...

  5. 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)

    次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...

  6. DP(悬线法)【P1169】 [ZJOI2007]棋盘制作

    顾z 你没有发现两个字里的blog都不一样嘛 qwq 题目描述-->p1169 棋盘制作 题目大意 给定一个01棋盘,求其中01交错的最大正方形与矩形. 解题思路: 动态规划---悬线法 以下内 ...

  7. 【DP悬线法】奶牛浴场

    虽然还是悬线法,但是这道题可不能轻易地套模板了,而是要换一种思路,横着扫一遍,竖着扫一遍,时间复杂度依旧是O(n^2),然而空间复杂度有一定的优化 如果用原来的方法,显然时间空间都会炸(如果你想用ma ...

  8. 算法浅谈之DP悬线法

    悬线法 用途 解决给定矩阵中满足条件的最大子矩阵 做法 用一条线(横竖貌似都行)左右移动直到不满足约束条件或者到达边界 定义 \(left[i][j]\):代表从\((i,j)\)能到达的最左位置 \ ...

  9. [DP专题]悬线法

    参考:https://blog.csdn.net/twtsa/article/details/8120269 先给出题目来源:(洛谷) 1.p1387 最大正方形 2.P1169 棋盘制作 3.p27 ...

随机推荐

  1. LeetCode -- Merge Two Sorted Linked List

    Question: Merge two sorted linked lists and return it as a new list. The new list should be made by ...

  2. Codeforces Round #390 (Div. 2) E(bitset优化)

    题意就是一个给出2个字符矩阵,然后进行匹配,输出每个位置的匹配的结果 (超出的部分循环处理) 一种做法是使用fft,比较难写,所以没有写 这里使用一个暴力的做法,考虑到一共只出现26个字符 所以使用一 ...

  3. 制作Windows10政府版的小白教程

    制作Windows10政府版的小白教程 https://03k.org/make10entg.html 首先,宿主系统要比操作的系统新,因为低版本dism操作不了: 当然也可以单独下载ADK,提取最新 ...

  4. [BZOJ1339] [Baltic2008] Mafia / 黑手党

    Description 匪徒准备从一个车站转移毒品到另一个车站,警方准备进行布控. 对于每个车站进行布控都需要一定的代价, 现在警方希望使用最小的代价控制一些车站,使得去掉这些车站后,匪徒无法从原定的 ...

  5. DDX_Control、SubclassWindow和SubclassDlgItem

    文章参考地址:http://blog.sina.com.cn/s/blog_86fe5b440101au88.html:http://www.cnblogs.com/riskyer/p/3424278 ...

  6. Phaser的timer用法

    1. 延迟timer,相当于setTimeout game.time.events.add(Phaser.Timer.SECOND*5,this.delayOver,this); 2. 循环timer ...

  7. NAS星云链 入门之从零开发第一个DAPP

    应该有很多小伙伴和我一样,一直想去入手学习区块链,但是总无从下手,有些概念感觉理解了,有感觉没理解.其实这都是“没实践”的锅. 所谓看十遍不如想一遍,想一遍不如做一遍.这不最近星云链nebulas正有 ...

  8. Consumer [分组背包]

    Consumer Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/65536 K (Java/Others) Total Subm ...

  9. java 多线程 原子性

    原子性 原子性:原子操作是不能被线程调度机制中断的操作,一旦操作开始,那么它就一定可以在可能发生的“上下文切换”之前(切换到其他线程执行)执行完毕. 依赖原子性是很棘手且很危险的,除非你是并发专家,否 ...

  10. gitlab之:gitlab 403 forbidden 并发引起ip被封

    步骤: * 打开/etc/gitlab/gitlab.rb文件. * 查找gitlab_rails['rack_attack_git_basic_auth']关键词. * 取消注释 * 修改ip_wh ...