金融时间序列预测方法合集:CNN、LSTM、随机森林、ARMA预测股票价格(适用于时序问题)、相似度计算、各类评判指标绘图(数学建模科研适用)

1.使用CNN模型预测未来一天的股价涨跌-CNN(卷积神经网络)

使用CNN模型预测未来一天的股价涨跌

数据介绍

open 开盘价;close 收盘价;high 最高价

low 最低价;volume 交易量;label 涨/跌

训练规模

特征数量×5;天数×5 = 5 × 5

卷积过程

最大池化过程

代码流程

  1. 获取股票数据
  2. 数据归一化
  3. 数据预处理(划分成5×5)
  4. 数据集分割(训练集和测试集)
  5. 定义卷积神经网络
  6. 评估预测模型

模型架构

码源链接见文末跳转

文末链接跳转

2.基于LSTM预测股票价格(长短期记忆神经网络)

基于LSTM预测股票价格(简易版)

数据集:

沪深300数据

数据特征:

只选用原始数据特征(开盘价、收盘价、最高价、最低价、交易量)

时间窗口:

15天

代码流程:

读取数据->生成标签(下一天收盘价)->分割数据集->LSTM模型预测->可视化->预测结果评估

LSTM网络结构:

函数介绍:

1、generate_label 生成标签(下一天收盘价)

2、generate_model_data 分割数据集

3、evaluate 结果评估

4、lstm_model LSTM预测模型

5、main 主函数(含可视化)

可视化输出:

训练集测试集拟合效果:

评估指标:

1、RMSE:55.93668241713906

2、MAE:44.51361108752264

3、MAPE:1.3418267677320612

4、AMAPE:1.3420384401412058

3.基于随机森林预测股票未来第d+k天相比于第d天的涨/跌Random-Forest(随机森林)

基于随机森林预测股票未来第d+k天相比于第d天的涨/跌(简易版)

参考论文:Predicting the direction of stock market prices using random forest

论文流程:

算法流程:

获取金融数据->指数平滑->计算技术指标->数据归一化->随机森林模型预测

函数介绍:

1、get_stock_data 通过Tushare获取原始股票数据

2、exponential_smoothing、em_stock_data 股票指数平滑处理

3、calc_technical_indicators 计算常用的技术指标

4、normalization 数据归一化处理并分割数据集

5、random_forest_model 随机森林模型并返回准确率和特征排名

决策树:

(1)ID3: 基于信息增益大的数据特征划分层次

(2)C4.5: 基于信息增益比=信息增益/特征熵划分层次

(3)CART: 基于Gini划分层次

基于Bagging集成学习算法,有多棵决策树组成(通常是CART决策树),其主要特性有:

(1)样本和特征随机采样

(2)适用于数据维度大的数据集

(3)对异常样本点不敏感

(4)可以并行训练(决策树间独立同分布)

算法输出:

注意:算法仅用于参考学习交流,由于是研一时期独立编写(以后可能进一步完善),所公开的代码并非足够完善和严谨,如以下问题:

  1. 模型涉及参数未寻优(可考虑网格搜索、随机搜索、贝叶斯优化)

    1. 指数平滑因子

    2. 随机森林模型树数量、决策树深度、叶子节点最小样本数等

    3. 未来第k天的选择

    4. 归一化方法

  2. 随机森林模型其实本身不需要数据归一化(如算法对数据集进行归一化也需要考虑对训练集、验证集、测试集独立归一化)

  3. 股票预测考虑的数据特征:

    1. 原始数据特征(open/close/high/low)

    2. 技术指标(Technical indicator)

    3. 企业公开公告信息

    4. 企业未来规划

    5. 企业年度报表

    6. 社会舆论

    7. 股民情绪

    8. 国家政策

    9. 股票间影响等

4.模型输出结果

5.随机森林参数优化参考表

4.基于ARMA预测股票价格-ARMA(自回归滑动平均模型)

基于ARMA预测股票价格(5分钟数据)

1.检测数据平稳化

2.差分/对数等数据处理

3.使用ARMA模型预测

备注:部分代码参考网络资源

5.金融时间序列相似度计算

5.1.皮尔逊相关系数( pearson_correlation_coefficient)

1.1 由于不同股票价格范围差距过大,在进行股票时间序列相似度匹配过程中通常考虑对数差处理,其公式如下所示:

1.2经过对数差处理后的金融时间序列可表示:

1.3皮尔逊相关系数计算公式:

1.4结果

1.4.1相关性较强

1.4.2相关性较弱

5.2.动态时间规整(dynamic_time_wrapping)

2.1 计算两个金融时间序列的时间点对应数据的欧氏距离

2.2 更新时间点对应数据的距离

2.3 动态时间规整距离

2.4 伪代码

2.5 动态时间规整距离输出图举例

2.6 动态时间规整最优匹配对齐

2.7结果

2.7.1动态时间规整距离较短

2.7.1动态时间规整距离较长

5.3.余弦相似度(cosine similarity)

6.金融时间序列(其他)

6.1.计算特征方差(calc_variance.py)

open 161211.21669504658
close 161415.73886306392
high 166077.6958545937
low 156622.3645795179
......

6.2.绘制混淆矩阵(confuse_matrix.py)

6.3.特征间相关性(corr.py)

6.4.绘制预测模型性能——柱状图(result_bar.py)

6.5.绘制预测模型性能——折线图(result_plot.py)

6.6.相似金融时间序列绘制(similarity_time_series.py)

6.7.计算分类的评价指标(evaluation.py)

(1)准确率Accuracy

(2)精确率Precision

(3)召回率Recall

(4)特异度Specificity

(5)综合评价指标F-measure

(6)马修斯相关系数MCC(Matthews Correlation Coefficient)

6.8.窗口数据归一化(normalization.py)

(1)z-score标准化(std)

(2)最大最小归一化(maxmin)

6.9.股票数据下载(download.py)

(1)tushare接口

(2)JQdata接口

6.10.roc曲线绘制(roc.py)

6.11.混淆矩阵绘制(confusion_matrix.py)

6.12.卡尔曼滤波(kalmanfilter.py)

6.13.蜡烛图 (candle.py)

码源链接见文末跳转

文末链接跳转

更多优质内容请关注公号&知乎:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

金融时间序列预测方法合集:CNN、LSTM、随机森林、ARMA预测股票价格(适用于时序问题)、相似度计算、各类评判指标绘图(数学建模科研适用)的更多相关文章

  1. 机器学习入门-随机森林温度预测的案例 1.datetime.datetime.datetime(将字符串转为为日期格式) 2.pd.get_dummies(将文本标签转换为one-hot编码) 3.rf.feature_importances_(研究样本特征的重要性) 4.fig.autofmt_xdate(rotation=60) 对标签进行翻转

    在这个案例中: 1. datetime.datetime.strptime(data, '%Y-%m-%d') # 由字符串格式转换为日期格式 2. pd.get_dummies(features)  ...

  2. 机器学习入门-随机森林温度预测-增加样本数据 1.sns.pairplot(画出两个关系的散点图) 2.MAE(平均绝对误差) 3.MAPE(准确率指标)

    在上一个博客中,我们构建了随机森林温度预测的基础模型,并且研究了特征重要性. 在这个博客中,我们将从两方面来研究数据对预测结果的影响 第一方面:特征不变,只增加样本的数据 第二方面:增加特征数,增加样 ...

  3. 关于Ubuntu系统忘记密码的解决方法合集

    昨天有台机器的Ubuntu系统密码出了问题,一直提示错误.由于里面的数据比较重要,不建议重装系统,所以百度了一会,最终解决了忘记密码问题.整理了一个大合集分享出来. 第一种:参考教程如下       ...

  4. kaggle 欺诈信用卡预测——不平衡训练样本的处理方法 综合结论就是:随机森林+过采样(直接复制或者smote后,黑白比例1:3 or 1:1)效果比较好!记得在smote前一定要先做标准化!!!其实随机森林对特征是否标准化无感,但是svm和LR就非常非常关键了

    先看数据: 特征如下: Time Number of seconds elapsed between each transaction (over two days) numeric V1 No de ...

  5. Unity3D 角色(物体) 移动方法 合集

    1. 简介 在Unity3D中,有多种方式可以改变物体的坐标,实现移动的目的,其本质是每帧修改物体的position. 2. 通过Transform组件移动物体 Transform 组件用于描述物体在 ...

  6. Vs2015 win10虚拟机启动问题:无法设置UDP端口 解决方法 合集(转载)

    刚装的vs2015 社区版 出现这个问题,wp8.1和win10m模拟器都无法启动,找了好久找到的解决方案,放这儿供大家参考,免得大家像我一样走弯路: Windows Phone emulator n ...

  7. Android中解析JSON格式数据常见方法合集

    待解析的JSON格式的文件如下: [{"id":"5", "version":"1.0", "name&quo ...

  8. JQuery 方法合集(懒人备记)

    原创文章,转载请私信.谢谢~ PS:请将jquery的引用文件放在head的标签内 语法:$(selector).action() $(document).ready(function(){ // 开 ...

  9. 【PaddlePaddle系列】报错解决方法合集 (不定时更新)

    1.PaddlePaddle使用CPU时正常运行,但是使用GPU时却报出一堆错误信息,节选如下: paddle.fluid.core.EnforceNotMet: enforce allocating ...

  10. 菜鸟的Xamarin.Forms前行之路——从新建项目到APP上架各种报错问题解决方法合集(不定时更新)

    出自:博客园-半路独行 原文地址:http://www.cnblogs.com/banluduxing/p/7425791.html 本文出自于http://www.cnblogs.com/banlu ...

随机推荐

  1. awk 文本编辑器

    1.简介 文本编辑器 非交互式的编辑器 编程语言 功能:对文本数据进行汇总和处理 是一个报告生成器 能够对数据进行排版 工作模式:行工作模式 读入一行 将整行内容存在$0里,一行等于一个记录 记录分隔 ...

  2. Arch Linux 更换国内镜像源

    自己用的 Arch Linux 在使用 pacman -Syu 更新系统时出现了连接超时的问题,看来又需要换个镜像源了.趁着今天还没想好要分享的内容,那就干脆以此为主题,总结一下如何给 Arch Li ...

  3. Educational Codeforces Round 6 620E. New Year Tree(DFS序+线段树)

    题目链接:点击打开链接 题意:给你一棵树,编号1~n,告诉你根结点是1. 每次有两个操作: 1,将以v为根的子树的结点全部染成颜色c 2,问以v为根的紫书的结点的颜色种类. 思路:如果这是一条线段的话 ...

  4. 云原生 Serverless Database 使用体验

    作者 | 李欣 近十年来互联网技术得到了飞速的发展,越来越多的行业加入到了互联网的矩阵,由此带来了更为丰富且复杂的业务场景需求,这对于数据应用系统的性能无疑是巨大的挑战.​ 关系型数据库 MySQL ...

  5. vue 3版本如何下载静态文件

    1.现将静态文件放到 public 目录下的static文件夹 2.<a href="/static/test.zip"  target="_blank" ...

  6. java调用百度地图接口输入名称查经度纬度

    如何注册ak号请参考https://blog.csdn.net/weixin_42512684/article/details/115843299 package manager.tool; impo ...

  7. 【驱动】串口驱动分析(三)-serial driver

    简介 前两节我们介绍串口驱动的框架和tty core部分.这节我们介绍和硬件紧密相关的串口驱动部分. UART驱动部分依赖于硬件平台,而TTY驱动和具体的平台无关.虽然UART部分依赖于平台,但是不管 ...

  8. vue prop 会接收不同的数据类型

    refAge: { type: Number, default: 0 }, refName: { type: String, default: '' }, hotDataLoading: { type ...

  9. chage详解:liunx账户密码过期时处理

    公司安装elasticSearcher7.10.2版本时提示账户密码过期,可以做以下的处理方式: 一.查看账户的使用情况 chage -l baikang [root@localhost ~]# ch ...

  10. npm, yarn和pnpm清理缓存

    .markdown-body { line-height: 1.75; font-weight: 400; font-size: 16px; overflow-x: hidden; color: rg ...