题目

桌面上摆放着 \(m\) 种魔术卡,共 \(n\) 张,第 \(i\) 种魔术卡数量为 \(a_i\),魔术卡顺次摆放,形成一个长度为 \(n\) 的魔术序列,

在魔术序列中,若两张相邻魔术卡的种类相同,则它们被称为一个魔术对。

两个魔术序列本质不同,当且仅当存在至少一个位置,使得两个魔术序列这个位置上的魔术卡的种类不同,

求本质不同的恰好包含 \(k\) 个魔术对的魔术序列的数量,答案对 \(998244353\) 取模。


分析

考虑给种类相同的也存在次序,最后再除以\(a_i!\),

对于单个种类至少有\(k\)个魔术对的方案就是

\[C(a_i,k)\frac{(a_i-1)!}{(a_i-k-1)!}
\]

就是先选择\(k\)个成为魔术对,再一个一个插入,

由于剩下的\(n-2*k\)个不确定是否产生魔术对,所以是至少

上面这个式子直接表示成\(m\)个多项式,用分治NTT

那恰好就不好做了,考虑容斥,

\[ans=\sum_{i=k}^n(-1)^{i-k}C(i,k)f[i](n-i)!
\]

\((n-i)!\)是因为把剩下的任意排


代码

#include <cstdio>
#include <cctype>
#include <cmath>
#include <cstring>
#include <algorithm>
#define rr register
#define mem(f,n) memset(f,0,sizeof(int)*(n))
#define cpy(f,g,n) memcpy(f,g,sizeof(int)*(n))
using namespace std;
const int mod=998244353,inv3=332748118,N=100011;
typedef long long lll; typedef unsigned long long ull;
int n,m,Gmi[31],Imi[31],len[15],fac[N],inv[N],ff[15][N<<2],a[N],v[15],t=1,ans,k;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline signed address(){
for (rr int i=0;i<15;++i)
if (!v[i]) return i;
return -1;
}
inline signed ksm(int x,int y){
rr int ans=1;
for (;y;y>>=1,x=1ll*x*x%mod)
if (y&1) ans=1ll*ans*x%mod;
return ans;
}
inline signed C(int n,int m){return 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod;}
namespace Theoretic{
int rev[N<<2],LAST; ull Wt[N<<2],F[N<<2];
inline void Pro(int n){
if (LAST==n) return; LAST=n,Wt[0]=1;
for (rr int i=0;i<n;++i)
rev[i]=(rev[i>>1]>>1)|((i&1)?n>>1:0);
}
inline void NTT(int *f,int n,int op){
Pro(n);
for (rr int i=0;i<n;++i) F[i]=f[rev[i]];
for (rr int o=1,len=1;len<n;++o,len<<=1){
rr int W=(op==1)?Gmi[o]:Imi[o];
for (rr int j=1;j<len;++j) Wt[j]=Wt[j-1]*W%mod;
for (rr int i=0;i<n;i+=len+len)
for (rr int j=0;j<len;++j){
rr int t=Wt[j]*F[i|j|len]%mod;
F[i|j|len]=F[i|j]+mod-t,F[i|j]+=t;
}
if (o==10) for (rr int j=0;j<n;++j) F[j]%=mod;
}
if (op==-1){
rr int invn=ksm(n,mod-2);
for (rr int i=0;i<n;++i) F[i]=F[i]%mod*invn%mod;
}else for (rr int i=0;i<n;++i) F[i]%=mod;
for (rr int i=0;i<n;++i) f[i]=F[i];
}
inline void Cb(int *f,int *g,int n){
for (rr int i=0;i<n;++i) f[i]=1ll*f[i]*g[i]%mod;
}
inline signed CDQ_NTT(int l,int r){
if (l==r){
rr int now=address();
len[now]=a[l],v[now]=1;
for (rr int i=0;i<len[now];++i)
ff[now][i]=1ll*C(a[l],i)*C(a[l]-1,i)%mod*fac[i]%mod;
return now;
}
rr int mid=(l+r)>>1,L;
rr int lef=CDQ_NTT(l,mid),rig=CDQ_NTT(mid+1,r);
for (L=1;L<len[lef]+len[rig];L<<=1);
NTT(ff[lef],L,1),NTT(ff[rig],L,1),Cb(ff[lef],ff[rig],L),
mem(ff[rig],L),len[lef]+=len[rig],len[rig]=v[rig]=0,NTT(ff[lef],L,-1);
return lef;
}
}
inline void GmiImi(){
for (rr int i=0;i<31;++i) Gmi[i]=ksm(3,(mod-1)/(1<<i));
for (rr int i=0;i<31;++i) Imi[i]=ksm(inv3,(mod-1)/(1<<i));
}
signed main(){
m=iut(),n=iut(),k=iut(),GmiImi(),inv[0]=inv[1]=fac[0]=fac[1]=1;
for (rr int i=2;i<=n;++i) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for (rr int i=2;i<=n;++i) fac[i]=1ll*fac[i-1]*i%mod,inv[i]=1ll*inv[i]*inv[i-1]%mod;
for (rr int i=1;i<=m;++i) a[i]=iut(),t=1ll*t*inv[a[i]]%mod;
rr int now=Theoretic::CDQ_NTT(1,m);
for (rr int i=k;i<=n;++i)
if ((i-k)&1) ans=(ans+mod-1ll*ff[now][i]*C(i,k)%mod*fac[n-i]%mod)%mod;
else ans=(ans+1ll*ff[now][i]*C(i,k)%mod*fac[n-i]%mod)%mod;
return !printf("%lld",1ll*ans*t%mod);
}

#分治NTT,容斥定理,排列组合#LOJ 6503 「雅礼集训 2018 Day4」Magic的更多相关文章

  1. Loj #6503. 「雅礼集训 2018 Day4」Magic

    Loj #6503. 「雅礼集训 2018 Day4」Magic 题目描述 前进!前进!不择手段地前进!--托马斯 · 维德 魔法纪元元年. 1453 年 5 月 3 日 16 时,高维碎片接触地球. ...

  2. LOJ#6503.「雅礼集训 2018 Day4」Magic[容斥+NTT+启发式合并]

    题意 \(n\) 张卡牌 \(m\) 种颜色,询问有多少种本质不同的序列满足相邻颜色相同的位置数量等于 \(k\). 分析 首先本质不同不好直接处理,可以将同种颜色的卡牌看作是不相同的,求出答案后除以 ...

  3. 【loj#6503.】「雅礼集训 2018 Day4」Magic(生成函数+容斥)

    题面 传送门 题解 复杂度比较迷啊-- 以下以\(n\)表示颜色总数,\(m\)表示总的卡牌数 严格\(k\)对比较难算,我们考虑容斥 首先有\(i\)对就代表整个序列被分成了\(m-i\)块互不相同 ...

  4. LOJ6503. 「雅礼集训 2018 Day4」Magic(容斥原理+NTT)

    题目链接 https://loj.ac/problem/6503 题解 题中要求本质不同的序列数量,不太好搞.我们考虑给相同颜色的牌加上编号,这样所有牌都不相同.那么如果我们求出了答案,只需要将答案除 ...

  5. Loj#6503-「雅礼集训 2018 Day4」Magic【分治NTT】

    正题 题目链接:https://loj.ac/p/6503 题目大意 \(n\)张卡\(m\)种,第\(i\)种卡有\(a_i\)张,求所有排列中有\(k\)对相邻且相同的卡牌. \(1\leq n\ ...

  6. [loj 6496]「雅礼集训 2018 Day1」仙人掌

    传送门 Description 给出一张 \(n\)个点 \(m\)条边的无向连通图,其中每条边至多属于一个简单环,保证没有自环,可能有重边.你需要为其中每条边定向,其中第 \(i\)个点的出度不能超 ...

  7. 【线段树分治 01背包】loj#6515. 「雅礼集训 2018 Day10」贪玩蓝月

    考试时候怎么就是没想到线段树分治呢? 题目描述 <贪玩蓝月>是目前最火爆的网页游戏.在游戏中每个角色都有若干装备,每件装备有一个特征值 $w$ 和一个战斗力 $v$ .在每种特定的情况下, ...

  8. LOJ #6509. 「雅礼集训 2018 Day7」C

    神仙题 LOJ #6509 题意 给定一棵树,点权为0/1,每次随机一个点(可能和之前所在点相同)走到该点并将其点权异或上1 求期望的移动距离使得所有点点权相同 题解 根本不会解方程 容易发现如果一个 ...

  9. loj 6037 「雅礼集训 2017 Day4」猜数列 - 动态规划

    题目传送门 传送门 题目大意 有一个位置数列,给定$n$条线索,每条线索从某一个位置开始,一直向左或者向右走,每遇到一个还没有在线索中出现的数就将它加入线索,问最小的可能的数列长度. 依次从左到右考虑 ...

  10. Loj 6036 「雅礼集训 2017 Day4」编码 - 2-sat

    题目传送门 唯一的传送门 题目大意 给定$n$个串,每个串只包含 ' .问是否可能任意两个不同的串不满足一个是另一个的前缀. 2-sat的是显然的. 枚举每个通配符填0还是1,然后插入Trie树. 对 ...

随机推荐

  1. 关于RabbitMQ消费者预取消息数量参数的合理设置

    根据RabbitMQ官方文档描述,可以通过"预取数量"来限制未被确认的消息个数,本质上这也是一种对消费者进行流控的方法. 详见:https://www.rabbitmq.com/c ...

  2. 构建SatelliteRpc:基于Kestrel的RPC框架(整体设计篇)

    背景 之前在.NET 性能优化群内交流时,我们发现很多朋友对于高性能网络框架有需求,需要创建自己的消息服务器.游戏服务器或者物联网网关.但是大多数小伙伴只知道 DotNetty,虽然 DotNetty ...

  3. 项目实战:Qt编译Qt库以及使用C#调用Qt库,并实现C#集成Qt的tcp客户端

    需求   1.Qt已经开发了应用,封装成Qt库,以供C#调用.  2.Qt的tcp客户端封装,以供C#调用,双向传递数据.   原理   1.使用QtCreator编译msvc版本的Qt库:  2.使 ...

  4. 对find命令结果进行操作

    # find匹配到一些文件后,可能希望对其进行一些操作,这时就可以使用-exec选项,exec选项后面跟着所要执行的命令,然后是一对{},一个空格和一个\,最后是一个分号; find . -type ...

  5. 矩池云 | GPU 分布式使用教程之 Pytorch

    GPU 分布式使用教程之 Pytorch Pytorch 官方推荐使用 DistributedDataParallel(DDP) 模块来实现单机多卡和多机多卡分布式计算.DDP 模块涉及了一些新概念, ...

  6. C#多线程(10):读写锁

    目录 ReaderWriterLockSlim ReaderWriterLockSlim 常用方法 订单系统示例 并发字典写示例 ReaderWriterLock 本篇的内容主要是介绍 ReaderW ...

  7. Thinkphp6 自定义命令创建类文件

    以创建控制器为例 1.先通过 think 命令创建一个make文件,效果如下图: php think make:command make/MyController 2.修改上面创建的文件[MyCont ...

  8. bounties 赏金 bon = good 来自法语 bonjour 早上好

    bounties 赏金 bon = good 来自法语 bonjour 早上好

  9. k8s创建Pod的流程

    Kubernetes(k8s)中Pod的创建过程是一个涉及多个组件协作的复杂流程,下面将详细描述这个过程,确保内容的详尽性和深度. 一.用户提交创建请求 Pod的创建始于用户通过kubectl命令行工 ...

  10. k8s架构解析

    Kubernetes(K8s)是一个开源的容器编排平台,用于自动化部署.扩展和管理容器化应用程序.Kubernetes由多个组件组成,每个组件都扮演着不同的角色.以下是Kubernetes中一些主要组 ...