题目

有一个长度为\(n\)的数列,现在有\(m\)组询问每次给出区间\([l,r]\),查询

\[\max_{i,j=1}^n\{gcd(a_i,a_j)[(i<l或i>r)且l\leq j\leq r]\}
\]

分析

首先是离线询问,考虑把\(i\)拆成两部分处理

也就是\(\max\{\max\{ans_{i<l}\},\max\{ans_{i>r}\}\}\)

后面这一坨将数列和询问编号翻转就转换成前面这一坨

那就按照区间的左端点递增排序,考虑小于左端点的位置所做的贡献,

处理每个约数下一次出现的位置,如果这个位置出现在区间内,说明这个约数是可以做出贡献的

那么预处理每个位置的数中每个约数下一次出现的位置,并用线段树维护区间最大值即可


代码

#include <cstdio>
#include <cctype>
#include <algorithm>
#include <cstring>
#define rr register
using namespace std;
const int N=100011;
struct rec{int l,r,rk;}q[N];
int n,m,a[N],ir[N],w[N<<2],h[N];
int ans[N],A[N][131],B[N][131],C[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
bool cmp(rec x,rec y){return x.l<y.l;}
inline signed max(int a,int b){return a>b?a:b;}
inline void update(int k,int l,int r,int x,int y){
if (l==r) {w[k]=max(w[k],y); return;}
rr int mid=(l+r)>>1;
if (x<=mid) update(k<<1,l,mid,x,y);
else update(k<<1|1,mid+1,r,x,y);
w[k]=max(w[k<<1],w[k<<1|1]);
}
inline signed query(int k,int l,int r,int x,int y){
if (l==x&&r==y) return w[k];
rr int mid=(l+r)>>1;
if (y<=mid) return query(k<<1,l,mid,x,y);
else if (x>mid) return query(k<<1|1,mid+1,r,x,y);
else return max(query(k<<1,l,mid,x,mid),query(k<<1|1,mid+1,r,mid+1,y));
}
inline void doit(){
sort(q+1,q+1+m,cmp);
memset(h,0,sizeof(h));
memset(w,0,sizeof(w));
for (rr int i=n,t=0;i;C[i--]=t,t=0)
for (rr int j=1;j<=ir[a[i]];++j)
if (a[i]%j==0){
if (h[j]) A[i][++t]=j,B[i][t]=h[j];
h[j]=i;
if (j*j<a[i]){
if (h[a[i]/j]) A[i][++t]=a[i]/j,B[i][t]=h[a[i]/j];
h[a[i]/j]=i;
}
}
for (rr int i=1,j=1;i<=m;++i){
for (;j<q[i].l;++j)
for (rr int o=1;o<=C[j];++o)
update(1,1,n,B[j][o],A[j][o]);
ans[q[i].rk]=max(ans[q[i].rk],query(1,1,n,q[i].l,q[i].r));
}
}
signed main(){
for (rr int i=1;i<317;++i) ir[i*i]=1;
for (rr int i=1;i<N;++i) ir[i]+=ir[i-1];
n=iut(); for (rr int i=1;i<=n;++i) a[i]=iut();
m=iut(); for (rr int i=1;i<=m;++i) q[i]=(rec){iut(),iut(),i};
doit(); for (rr int i=1;i<=m;++i) swap(q[i].l,q[i].r);
for (rr int i=1;i<=m;++i) q[i].l=n-q[i].l+1,q[i].r=n-q[i].r+1;
reverse(a+1,a+1+n),doit();
for (rr int i=1;i<=m;++i) print(ans[i]),putchar(10);
return 0;
}

#线段树,约数#洛谷 3889 [GDOI2014]吃的更多相关文章

  1. 【线段树】洛谷 P3372 【模板】线段树 1

    动态开结点线段树板子. #include<cstdio> using namespace std; typedef long long ll; ll sumv[400005],delta[ ...

  2. AC日记——【模板】线段树 2 洛谷 P3373

    P3373 [模板]线段树 2387通过1.8K提交标签难度 提高+/省选- 提交 讨论 题解 最新讨论 更多讨论 2333最后三个点卡常数.迷之RE感觉这题很迷啊好像一共三组测试数据.友情提示:开l ...

  3. AC日记——【模板】线段树 1 洛谷 P3372

    题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表示该数列数字的个数和操作的总个 ...

  4. 线段树【洛谷P2894】 [USACO08FEB]酒店Hotel

    P2894 [USACO08FEB]酒店Hotel 参考样例,第一行输入n,m ,n代表有n个房间,编号为1---n,开始都为空房,m表示以下有m行操作,以下 每行先输入一个数 i ,表示一种操作: ...

  5. P3372 【模板】线段树 1 洛谷

    https://www.luogu.org/problem/show?pid=3372 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.求出某区间每一个数的和 ...

  6. 洛谷 P1736 创意吃鱼法

    题目描述 题目链接:https://www.luogu.org/problemnew/show/P1736 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢( ...

  7. 洛谷 P1736 创意吃鱼法 Label:dp || 前缀和

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

  8. 洛谷P1736 创意吃鱼法

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

  9. [虚树模板] 洛谷P2495 消耗战

    题意:给定树上k个点,求切断这些点到根路径的最小代价.∑k <= 5e5 解:虚树. 构建虚树大概是这样的:设加入点与栈顶的lca为y,比较y和栈中第二个元素的DFS序大小关系. 代码如下: i ...

  10. 洛谷P1736 创意吃鱼法 dp

    正解:dp 解题报告: 早就想写dp的题目辣!我发现我的dp好差啊QAQ所以看到列表的小朋友写dp的题目就跟着他们的步伐做下题好辣QwQ 这题的话没有那——么难,大概说下趴QwQ 首先说下题意 前面一 ...

随机推荐

  1. 【LeetCode二叉树#04】判断对称二叉树、相同的树、另一棵子树、树的子结构(二叉树相等判断)

    对称二叉树 力扣题目链接(opens new window) 给定一个二叉树,检查它是否是镜像对称的. 思路 本题中,不能单纯去比较左右子节点的是否对称(都有值且不为空) 因为如果按上面那样做的话,到 ...

  2. Redisson 框架中的分布式锁

    实现分布式锁通常有三种方式:数据库.Redis 和 Zookeeper.我们比较常用的是通过 Redis 和 Zookeeper 实现分布式锁.Redisson 框架中封装了通过 Redis 实现的分 ...

  3. 如何当个优秀的文档工程师?从 TC China 看技术文档工程师的自我修养

    本文系 NebulaGraph Community Academic 技术文档工程师 Abby 的参会观感,讲述了她在中国技术传播大会分享的收获以及感悟. 据说,技术内容领域.传播领域的专家和决策者们 ...

  4. Hello 2024C. Grouping Increases(贪心)

    我们只需要记录每个数结尾的数是多少(有点最长上升子序列的味道) 这种子序列的题目很多都是这样的,因为不需要连续很多时候我们只记录最后一个元素是多少. \(记s为较大子序列结尾当前的数,t为较小子序列结 ...

  5. Codeforces Round 638 (Div. 2)B. Phoenix and Beauty

    B. Phoenix and Beauty 这道题目学到的东西: 从给出的数据范围观察,得到一些有用信息(峰哥教的) 考虑无解的情况' 其实这题考虑怎么操作是比较难的,如果能想出来满足条件的结果就比较 ...

  6. Acwing第132场周赛

    AcWing 5366. 大小写转换 签到题,可以用stl里面的tolower函数 #include <bits/stdc++.h> #define ls p<<1 #defi ...

  7. 离线部署-docker

    离线部署---docker 关键词:docker离线部署,images离线安装,docker compose,shell,minio docker离线安装 docker install offline ...

  8. C#版开源免费的Bouncy Castle密码库

    前言 今天大姚给大家分享一款C#版开源.免费的Bouncy Castle密码库:BouncyCastle. 项目介绍 BouncyCastle是一款C#版开源.免费的Bouncy Castle密码库, ...

  9. 深入浅出Java多线程(十二):线程池

    引言 大家好,我是你们的老伙计秀才!今天带来的是[深入浅出Java多线程]系列的第十二篇内容:线程池.大家觉得有用请点赞,喜欢请关注!秀才在此谢过大家了!!! 在现代软件开发中,多线程编程已经成为应对 ...

  10. MFC动态创建控件并添加消息映射

    目录 指定ID 对象指针 建立对象 控件样式 消息映射 按钮单击 组合框选中 指定ID 在类中声明并定义按钮控件的起始ID,以控件的类型和功能对动态控件ID进行分组,每组最好定义一个自己的起始ID方便 ...