#dp#D 导出子图


代码
#include <cstdio>
#include <cctype>
#include <algorithm>
#define rr register
using namespace std;
const int N = 4011, mod = 1000000007;
struct rec {
int l, r;
} a[N >> 1];
int n, nxt[N], dp[N >> 1][N], ans;
inline signed iut() {
rr int ans = 0;
rr char c = getchar();
while (!isdigit(c)) c = getchar();
while (isdigit(c)) ans = (ans << 3) + (ans << 1) + (c ^ 48), c = getchar();
return ans;
}
inline signed mo(int x, int y) { return x + y >= mod ? x + y - mod : x + y; }
bool cmp(rec x, rec y) { return x.l < y.l; }
signed main() {
freopen("graph.in", "r", stdin);
freopen("graph.out", "w", stdout);
n = iut();
for (rr int i = 1; i <= n; ++i) a[i] = (rec){ iut(), iut() };
sort(a + 1, a + 1 + n, cmp);
for (rr int i = 1, j = 1; i < N; ++i) {
for (; j <= n && a[j].l <= i; ++j)
;
nxt[i] = j;
}
for (rr int i = 1; i <= n; ++i) dp[i + 1][a[i].r] = 1;
for (rr int i = 1; i <= n; ++i)
for (rr int j = 1; j < N; ++j) {
dp[i + 1][j] = mo(dp[i + 1][j], dp[i][j]);
if (a[i].l > j)
continue;
if (a[i].r > j)
dp[nxt[j]][a[i].r] = mo(dp[nxt[j]][a[i].r], dp[i][j]);
else
dp[nxt[a[i].r]][j] = mo(dp[nxt[a[i].r]][j], dp[i][j]);
}
for (rr int j = 1; j < N; ++j) ans = mo(ans, dp[n + 1][j]);
return !printf("%d", ans);
}
#dp#D 导出子图的更多相关文章
- 【gdoi2018 day2】第二题 滑稽子图(subgraph)(性质DP+多项式)
题目大意 [gdoi2018 day2]第二题 滑稽子图(subgraph) 给你一颗树\(T\),以及一个常数\(K\),对于\(T\)的点集\(V\)的子集\(S\). 定义\(f(S)\)为点集 ...
- GDOI2018 滑稽子图 [斯特林数,树形DP]
传送门并没有 思路 见到那么小的\(k\)次方,又一次想到斯特林数. \[ ans=\sum_{T} f(T)^k = \sum_{i=0}^k i!S(k,i)\sum_{T} {f(T)\choo ...
- 【ZJOI 2018】线图(树的枚举,hash,dp)
线图 题目描述 九条可怜是一个热爱出题的女孩子. 今天可怜想要出一道和图论相关的题.在一张无向图 $G$ 上,我们可以对它进行一些非常有趣的变换,比如说对偶,又或者说取补.这样的操作往往可以赋予一些传 ...
- bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...
- Graph_Master(连通分量_H_Trajan+拓扑序dp)
Graph_Master_连通分量_H 题目描述: 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条 ...
- bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...
- 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp
题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...
- 【BZOJ1093】【ZJOI2007】最大半联通子图 [DP][Tarjan]
最大半连通子图 Time Limit: 30 Sec Memory Limit: 162 MB[Submit][Status][Discuss] Description 一个有向图G=(V,E)称为 ...
- BZOJ1093: [ZJOI2007]最大半连通子图(tarjan dp)
题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G' ...
- 【tarjan 拓扑排序 dp】bzoj1093: [ZJOI2007]最大半连通子图
思维难度不大,关键考代码实现能力.一些细节还是很妙的. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于 ...
随机推荐
- pycharm中如何改变主题
这边分享一个我自己在用的主题,蛮简约的,关键字高亮显示.再也不用全都是一样的颜色了.网盘地址在最后哈 好了话不多说,教大家如何把主题设置到pycharm中 图1:首先把主题jar包下载下来,然后打开p ...
- 如何拓展jwt返回的数据
默认的返回值仅有token,我们还需在返回值中增加username和id,方便在客户端页面中显示当前登陆用户 通过修改该视图的返回值可以完成我们的需求. 在user/utils.py中,创建 def ...
- Retrofit 的基本用法
一.添加依赖和网络权限 添加依赖 implementation 'com.squareup.retrofit2:retrofit:2.9.0' implementation 'com.squareup ...
- 机器学习策略篇:详解单一数字评估指标(Single number evaluation metric)
单一数字评估指标 无论是调整超参数,或者是尝试不同的学习算法,或者在搭建机器学习系统时尝试不同手段,会发现,如果有一个单实数评估指标,进展会快得多,它可以快速告诉,新尝试的手段比之前的手段好还是差.所 ...
- 【LeetCode递归】括号生成,使用dfs
括号匹配 数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合. 示例 1: 输入:n = 3 输出:["((()))","(() ...
- 【Azure 微服务】记一次错误的更新Service Fabric 证书而引发的集群崩溃而只能重建
问题描述 错误的操作步骤: 1)更新Service Fabric 的证书,制定了次要证书(Secondary),但是只修改了Service Fabric Cluster证书,而没有指定VMSS(虚拟机 ...
- 揭秘可视化图探索工具 NebulaGraph Explore 是如何实现图计算的
前言 在可视化图探索工具 NebulaGraph Explorer 3.1.0 版本中加入了图计算工作流功能,针对 NebulaGraph 提供了图计算的能力,同时可以利用工作流的 nGQL 运行能力 ...
- 字典嵌套列表 与 列表嵌套字典 导出为csv 的方法
字典嵌套列表 导出csv {'rank': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '1 ...
- 私有网盘服务 dzzoffice部署
官网地址: https://dzzoffice.com/ dzzoffice有多种部署方式, docker方式,源码方式, 经过测试,这两种部署方式在数据进行备份恢复时都会存在一些bug, 所有这里采 ...
- 俄罗斯套娃 (Matryoshka) 嵌入模型概述
在这篇博客中,我们将向你介绍俄罗斯套娃嵌入的概念,并解释为什么它们很有用.我们将讨论这些模型在理论上是如何训练的,以及你如何使用 Sentence Transformers 来训练它们. 除此之外,我 ...