代码

#include <cstdio>
#include <cctype>
#include <algorithm>
#define rr register
using namespace std;
const int N = 4011, mod = 1000000007;
struct rec {
int l, r;
} a[N >> 1];
int n, nxt[N], dp[N >> 1][N], ans;
inline signed iut() {
rr int ans = 0;
rr char c = getchar();
while (!isdigit(c)) c = getchar();
while (isdigit(c)) ans = (ans << 3) + (ans << 1) + (c ^ 48), c = getchar();
return ans;
}
inline signed mo(int x, int y) { return x + y >= mod ? x + y - mod : x + y; }
bool cmp(rec x, rec y) { return x.l < y.l; }
signed main() {
freopen("graph.in", "r", stdin);
freopen("graph.out", "w", stdout);
n = iut();
for (rr int i = 1; i <= n; ++i) a[i] = (rec){ iut(), iut() };
sort(a + 1, a + 1 + n, cmp);
for (rr int i = 1, j = 1; i < N; ++i) {
for (; j <= n && a[j].l <= i; ++j)
;
nxt[i] = j;
}
for (rr int i = 1; i <= n; ++i) dp[i + 1][a[i].r] = 1;
for (rr int i = 1; i <= n; ++i)
for (rr int j = 1; j < N; ++j) {
dp[i + 1][j] = mo(dp[i + 1][j], dp[i][j]);
if (a[i].l > j)
continue;
if (a[i].r > j)
dp[nxt[j]][a[i].r] = mo(dp[nxt[j]][a[i].r], dp[i][j]);
else
dp[nxt[a[i].r]][j] = mo(dp[nxt[a[i].r]][j], dp[i][j]);
}
for (rr int j = 1; j < N; ++j) ans = mo(ans, dp[n + 1][j]);
return !printf("%d", ans);
}

#dp#D 导出子图的更多相关文章

  1. 【gdoi2018 day2】第二题 滑稽子图(subgraph)(性质DP+多项式)

    题目大意 [gdoi2018 day2]第二题 滑稽子图(subgraph) 给你一颗树\(T\),以及一个常数\(K\),对于\(T\)的点集\(V\)的子集\(S\). 定义\(f(S)\)为点集 ...

  2. GDOI2018 滑稽子图 [斯特林数,树形DP]

    传送门并没有 思路 见到那么小的\(k\)次方,又一次想到斯特林数. \[ ans=\sum_{T} f(T)^k = \sum_{i=0}^k i!S(k,i)\sum_{T} {f(T)\choo ...

  3. 【ZJOI 2018】线图(树的枚举,hash,dp)

    线图 题目描述 九条可怜是一个热爱出题的女孩子. 今天可怜想要出一道和图论相关的题.在一张无向图 $G$ 上,我们可以对它进行一些非常有趣的变换,比如说对偶,又或者说取补.这样的操作往往可以赋予一些传 ...

  4. bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  5. Graph_Master(连通分量_H_Trajan+拓扑序dp)

    Graph_Master_连通分量_H 题目描述: 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条 ...

  6. bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp

    一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...

  7. 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp

    题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...

  8. 【BZOJ1093】【ZJOI2007】最大半联通子图 [DP][Tarjan]

    最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description 一个有向图G=(V,E)称为 ...

  9. BZOJ1093: [ZJOI2007]最大半连通子图(tarjan dp)

    题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G' ...

  10. 【tarjan 拓扑排序 dp】bzoj1093: [ZJOI2007]最大半连通子图

    思维难度不大,关键考代码实现能力.一些细节还是很妙的. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于 ...

随机推荐

  1. golang泛型简介

    linux下go版本安装(1.18.1版本) >>> wget https://go.dev/dl/go1.18.1.linux-amd64.tar.gz >>> ...

  2. React 组件之样式

    无论你的梦想有多么高远,记住,一切皆有可能. 我们从前面的学习知道一个 React 组件不仅仅只包含 DOM 结构的,还应该样式和 Javascript 逻辑的.这里我们学习下如何构建 CSS 样式. ...

  3. 【LeetCode剑指offer 01】数组中重复的数字、两个栈实现队列

    数组中重复的数字 数组中重复的数字 找出数组中重复的数字. 在一个长度为 n 的数组 nums 里的所有数字都在 0-n-1 的范围内.数组中某些数字是重复的,但不知道有几个数字重复了,也不知道每个数 ...

  4. 【Azure Developer】在Azure Storage Account的两个Blob可以同步吗?可以跨订阅拷贝吗?

    问题描述 不同订阅下的Azure Storage Account中Blob资源可以同步吗? 解决方案 可以.通过Azure 官方推荐的Storage Account工具来完成 Copy/Paste 操 ...

  5. 【Azure 事件中心】适用Mirror Maker生产数据发送到Azure Event Hub出现发送一段时间后Timeout Exception: Expiring 18 record(s) for xxxxxxx: 79823 ms has passed since last append

    问题描述 根据"将 Apache Kafka MirrorMaker 与事件中心配合使用"一文,成功配置了Mirror Maker来发送数据到Event Hub中.为什么只能成功运 ...

  6. nmcli命令详解(创建热点,连接wifi,管理连接等)

    目录 简述 语法 比较有用的选项(OPTION) 对象 general对象(常规信息) 用途 语法 networking对象(整个网络) 用途 语法 命令示例 radio对象(无线开关) 用途 语法 ...

  7. 从实测出发,掌握 NebulaGraph Exchange 性能最大化的秘密

    自从开发完 NebulaGraph Exchange,混迹在各个 NebulaGraph 微信群的我经常会看到一类提问是:NebulaGraph Exchange 的性能如何?哪些参数调整下可以有更好 ...

  8. 方便快速的看到C/C++代码汇编 objdump 英特尔语法

    目录 概述 Objdump 所有参数 其他的 概述 因为奇怪的考试要求,最近经常有奇怪的问题,例如为什么(++a)+(++a)=14 发现反编译出汇编之后,就能解释很多奇怪的问题 Objdump 一次 ...

  9. ArrayList学习总结

    1.ArrayList简介[1] ArrayList实现了List接口.ArrayList的方法实现和vector相似,只是线程不安全的. ArrayList的 size.isEmpty.get.se ...

  10. Mysql常用存储引擎以及区别?

    InnoDB:是Mysql的默认存储引擎,支持事务.外键.如果应用对事务的完整性有比较高的要求,在并发条件下要求数据的一致性,数据操作除了插入和查询之外,还包含很多的更新.删除操作,那么InnoDB存 ...