P1379 八数码难题

题目描述

在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字。棋盘中留有一个空格,空格用0来表示。空格周围的棋子可以移到空格中。要求解的问题是:给出一种初始布局(初始状态)和目标布局(为了使题目简单,设目标状态为123804765),找到一种最少步骤的移动方法,实现从初始布局到目标布局的转变。

输入格式

输入初始状态,一行九个数字,空格用0表示

输出格式

只有一行,该行只有一个数字,表示从初始状态到目标状态需要的最少移动次数(测试数据中无特殊无法到达目标状态数据)

输入输出样例

输入 #1

283104765

输出 #1

4

分析:

利用A-star(A*算法),设目标状态为

123
804
765

\(h\) 函数可以定义为,不在应该在的位置的数字个数。

容易发现 \(h\) 满足以上两个性质,此题可以使用 A*算法求解。

代码实现:

#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
#include <set>
using namespace std;
const int dx[4] = {1, -1, 0, 0}, dy[4] = {0, 0, 1, -1};
int fx, fy;
char ch;
struct matrix {
int a[5][5];
bool operator<(matrix x) const {
for (int i = 1; i <= 3; i++)
for (int j = 1; j <= 3; j++)
if (a[i][j] != x.a[i][j]) return a[i][j] < x.a[i][j];
return false;
}
} f, st;
int h(matrix a) {
int ret = 0;
for (int i = 1; i <= 3; i++)
for (int j = 1; j <= 3; j++)
if (a.a[i][j] != st.a[i][j]) ret++;
return ret;
}
struct node {
matrix a;
int t;
bool operator<(node x) const { return t + h(a) > x.t + h(x.a); }
} x;
priority_queue<node> q;
set<matrix> s;
int main() {
st.a[1][1] = 1;
st.a[1][2] = 2;
st.a[1][3] = 3;
st.a[2][1] = 8;
st.a[2][2] = 0;
st.a[2][3] = 4;
st.a[3][1] = 7;
st.a[3][2] = 6;
st.a[3][3] = 5;
for (int i = 1; i <= 3; i++)
for (int j = 1; j <= 3; j++) {
scanf(" %c", &ch);
f.a[i][j] = ch - '0';
}
q.push({f, 0});
while (!q.empty()) {
x = q.top();
q.pop();
if (!h(x.a)) {
printf("%d\n", x.t);
return 0;
}
for (int i = 1; i <= 3; i++)
for (int j = 1; j <= 3; j++)
if (!x.a.a[i][j]) fx = i, fy = j;
for (int i = 0; i < 4; i++) {
int xx = fx + dx[i], yy = fy + dy[i];
if (1 <= xx && xx <= 3 && 1 <= yy && yy <= 3) {
swap(x.a.a[fx][fy], x.a.a[xx][yy]);
if (!s.count(x.a)) s.insert(x.a), q.push({x.a, x.t + 1});
swap(x.a.a[fx][fy], x.a.a[xx][yy]);
}
}
}
return 0;
}

继续想想还有没有其他方法,

假设每一步都是有意义的,那么一个数字成功对上也要移动他们的曼哈顿距离次

所以,我们将估价函数设计为所有数字与目标状态中数字的曼哈顿距离之和(当然0不算,否则你就可以高兴的WA了)

还有一个显然的优化,就是记录上一次的操作

而且我们不一定要用二维数组,可以用一个string来保存状态。对于一个string中的下标i,纵坐标为i/3, 横坐标为i%3。对于二维数组下标x, y, string中的下标便为x * 3 + y

还有不明白的,请看代码

IDA_star

除了估价函数,还有一个显然的优化是记录上一次的操作

#include<bits/stdc++.h>
using namespace std;
string st, ed;//起始状态和目标
int depth;//搜索深度
//估价函数,为每个数字的曼哈顿距离之和
int hfunc(string st) {
int ans = 0;
for (register int i = 0; i < st.size(); ++i) {
if (st[i] == '0') continue;//0不算,否则会WA
int j = ed.find(st[i]), r = i / 3, c = i % 3;
int x = j / 3, y = j % 3;
//横坐标为/3, 纵坐标为%3
ans += abs(r - x) + abs(c - y);
}
return ans;
}
const int dx[4] = {1, -1, 0, 0}, dy[4] = {0, 0, -1, 1};
//IDA_star
//除了估价函数,还有一个显然的优化是记录上一次的操作
bool dfs(int now, int pre) {
int cnt = hfunc(st);
if (!cnt) return 1;
if (now + cnt > depth) return 0;
//当前步数+估价>深度限制,立即回溯
int pos = st.find('0'), x = pos / 3, y = pos % 3;
for (register int i = 0; i < 4; ++i) {
int nx = x + dx[i], ny = y + dy[i];
if (nx < 0 || nx > 2 || ny < 0 || ny > 2 || nx * 3 + ny == pre) continue;
//数组中的下标为横坐标*3+纵坐标
swap(st[pos], st[nx * 3 + ny]);
if (dfs(now + 1, pos)) return 1;
swap(st[pos], st[nx * 3 + ny]);
}
return 0;
}
int main() {
cin >> st;
ed = "123804765";
depth = hfunc(st);
while (depth <= 27 && !dfs(0, -1)) ++depth;
cout << depth << endl;
}

从AC速度上看 IDA_star 利用了保存的结果明显加快了速度

同样这道题也可以使用BFS做,毕竟当估值函数 h = 1时就是BFS嘛 ^ v ^

P1379 八数码难题 ( A* 算法 与 IDA_star 算法)的更多相关文章

  1. 洛谷 P1379 八数码难题 解题报告

    P1379 八数码难题 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初 ...

  2. 洛谷——P1379 八数码难题

    P1379 八数码难题 双向BFS 原来双向BFS是这样的:终止状态与起始状态同时入队,进行搜索,只不过状态标记不一样而已,本题状态使用map来存储 #include<iostream> ...

  3. [luogu]P1379 八数码难题[广度优先搜索]

    八数码难题 ——!x^n+y^n=z^n 我在此只说明此题的一种用BFS的方法,因为本人也是初学,勉勉强强写了一个单向的BFS,据说最快的是IDA*(然而蒟蒻我不会…) 各位如果想用IDA*的可以看看 ...

  4. 洛谷P1379八数码难题

    题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中. 要求解的问题是:给出一种初始布局(初始状态)和目标布局(为 ...

  5. luogu P1379 八数码难题(A*算法入门详细讲解)

     代码实现细节 #include<cstdio> #include<cstring> #include<iostream> using namespace std; ...

  6. 洛谷 P1379 八数码难题 Label:判重&&bfs

    特别声明:紫书上抄来的代码,详见P198 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给 ...

  7. 【洛谷】P1379 八数码难题(bfs)

    题目 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初始状态)和目标布局 ...

  8. 洛谷 P1379 八数码难题

    题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初始状态)和目标布局(为了 ...

  9. 洛谷 - P1379 - 八数码难题 - bfs

    https://www.luogu.org/problemnew/show/P1379 #include <bits/stdc++.h> using namespace std; #def ...

  10. 洛谷—— P1379 八数码难题

    https://daniu.luogu.org/problem/show?pid=1379 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示 ...

随机推荐

  1. AtCoder_abc327

    T1 ab 循环从s[0] 到s[n-2] 判断有无ab相邻 T2 A^A 两层循环枚举就可以了 由于aa会增长的很快,所以当a=16时aa就已经大于\(10^{18}\)了,一定不会T 就这么点数打 ...

  2. Net 高级调试之十三:托管堆的几个经典破坏问题

    一.介绍 今天是<Net 高级调试>的第十三篇文章,这篇文章写作时间的跨度有点长.这篇文章我们主要介绍 经典的案例,如何查找问题,如何解决问题,最重要我们看到了问题,要有解决的思路,没有思 ...

  3. StarBlog - 2023年底更新内容一览

    前言 先说一下我对 StarBlog 这个系列的文章的规划吧,在 StarBlog 的 1.x 版本,我会同步更新两个系列的文章 博客前台+接口开发笔记 (即当前已发布的这一系列文章) 博客Vue后台 ...

  4. The second day learning summary

    1.什么是接口测试? 接口测试是测试系统组件间接口的一种测试.接口测试主要用于外部系统与系统之间以及内部各个子系统之间的交互点,定义特定的交互点,然后通过这些交互点来,通过一些特殊的规则也就是协议,来 ...

  5. 2021AI量化投资训练营重磅升级,自带编程的优势显而易见

    量化交易规模突破万亿大关 国内量化交易规模快速发展,今年量化基金已突破万亿大关,并且量化私募的整体业绩十分亮眼,过去5年一线量化私募的超额收益基本在20%~30%,量化交易的占比已达到20%-30%( ...

  6. Android动态数字输入框

    基础view如下: 具体的思路实现: 1:展示textview实现 2: 顶层使用透明的edittext.获取焦点/删除文字等. public class BaseVerificationCodeVi ...

  7. S32Kxxx bootloader之CAN FD UDS bootloader

    了解更多关于bootloader 的C语言实现,请加我Q扣: 1273623966 (验证信息请填 bootloader),欢迎咨询或定制bootloader(在线升级程序). 六年前, 汽车内ECU ...

  8. java,类、实例化、构造方法、this关键字、方法重载

    编写类的步骤: 1.定义类名 2.编写类的属性 3.编写类的方法 public  访问修饰符,表示在整个项目中都可以调用,也可以用其他词 使用class关键字来定义类,如下,定义一个Cat类 给了属性 ...

  9. 解决vps掉线问题

    解决vps掉线问题 常见现象 在有时候遇到网络或者断电等一系列突发状况时,可能会导致在传输大文件或是好不容易拿到一个session断连了,所以有了这次学习解决这个问题的记录 场景复现 这里直接用kal ...

  10. Navicat Premium多用户破解方法 12以上版本

    https://www.cnblogs.com/cgqplus/p/15267306.html 本文不提供注册机或者破解工具,本论坛多的是,搜索一下就好了. 本方法适用于多用户环境下使用,比如在服务器 ...