题目描述

Alice和Bob打球,已知他们打过的每一回合的输赢情况,每个回合获胜的一方可以得一分。 Alice可以随意设定赢得一局比赛所需的分数和赢得整个比赛所需要的局数。 Alice想赢得比赛,请问在满足下列条件下,Alice应该怎么设置这两个参数,保证自己能赢?

  • 所有的回合都必须用来计算比赛的结果,即每一局比赛都会完整的结束,不会存在未完成的对局

  • 谁先拿到赢得一局所需的分数就赢得这一局

  • 谁先达到赢得比赛所需的局数就赢得这场比赛

  • 不会出现某一方已经赢得比赛的一局或者整场比赛后,还继续打球的情况

  • 每局胜利所需要的分数是相同

输入

包含不超过1000组样例,每个样例为一行。 每行输入一个只含字母'W''L'的字符串,长度不超过200,'W''L'分别表示这一回合Alice赢或者输。

输出

每个样例先输出一行,为合法方案的总数。然后按局分,局数的升序,每一行输出一个方案,包括两个整数,即局分和局数。如果Alice无法赢或者没有合法的方案,只需要输出方案数为0即可。

样例输入

LWW
WLWW
LLWW

样例输出

2
1 2
2 1
2
1 3
3 1
0

样例解释

第一个样例:可以每局先得1分者胜,先赢得2局的人获得整场胜利;也可以每局先得2分者胜,先赢得1局的人获得整场胜利。 第二个样例:可以每局先得3分者胜,先赢得1局的人获得整场胜利;也可以每局先得1分者胜,先赢得3局的人获得整场胜利。不能令每局先得2分者胜,先赢得1局的人获得整场胜利,因为那样会留下未完成的对局。 第三个样例:可怜的Alice无论如何也不能赢。

思路:

本题的大体思路就是模拟,给定胜利需要赢的局数j和每局赢的分数i,然后进行比赛模拟(写个check函数),看Alice在给定的i和j之下,能不能获得胜利

当然不能直接暴力取值。。。。

总共的输赢回合数为n(也就是题目中字符串的长度)

假定每局要赢的分数为i,那么i的取值范围是1-n

问题转化为求胜利要赢的局数j的取值范围

在给定的n不变的情况下

1、如果Alice一直得分,则要赢的局数最多(我实力这么强,还要打这么久,肯定是获胜的条件太严格)

2、如果Alice与Bob实力相当,则要赢的局数最少(我俩实力差不多,打得有来有回,指不定某局侥幸了一下就获胜了)

在1的条件下,j的最大值为n/i

在2的条件下,Alice与Bob实力相当的极限条件如下:

Alice赢了j局,Bob赢了j-1局,并且每局中赢的那一方得了i分,输的那一方得了i-1分(真的非常实力相当了)

所以此时j的最小值为j*(i+i-1) + (j-1)*(i-1+i) = n

解得j = (n+2i-1) / (4i-2)

所以j的范围就得出来了:[(n+2i-1) / (4i-2),n/i]

代码

 1 import java.io.IOException;
2 import java.util.LinkedList;
3 import java.util.List;
4 import java.util.Scanner;
5 ​
6 public class Main {
7 public static char str[]; // 存储输赢回合结果
8 public static int n; // 存储输赢回合数
9 ​
10 public static void main(String[] args) throws IOException {
11 Scanner sc = new Scanner(System.in);
12 while (sc.hasNext()) {
13 str = sc.next().toCharArray(); // 变成字符数组操作时间更短
14 n = str.length;
15 int ans = 0; // 记录结果方案数
16 List<int[]> list = new LinkedList<>(); // 记录结果方案
17 for (int i = 1; i <= n; i++) {
18 for (int j = (n + 2 * i - 1) / (4 * i - 2); j <= n / i; j++) {
19 if (check(i, j)) {
20 ans++;
21 list.add(new int[]{i, j});
22 }
23 }
24 }
25 // 输出结果~
26 System.out.println(ans);
27 for (int k = 0; k < ans; k++) {
28 int temp[] = list.get(k);
29 System.out.println(temp[0] + " " + temp[1]);
30 }
31 }
32 ​
33 }
34
35 // 给定i和j,判断是否刚好能赢
36 public static boolean check(int i, int j){
37 int alice = 0, a_now = 0; // Alice赢的局数、现在的分数
38 int bob = 0, b_now = 0; // Bob赢的局数、现在的分数
39 for (int k = 0; k < n; k++) {
40 if (str[k] == 'W') a_now++;
41 else b_now++;
42 // 判断有没有赢
43 if (a_now == i) {
44 alice++; // Alice赢
45 a_now = 0; //新开一局
46 b_now = 0;
47 }
48 if (b_now == i) {
49 bob++;
50 a_now = 0;
51 b_now = 0;
52 }
53 }
54 // 获胜的条件:当前这局已经打完,并且Alic赢的局数比Bob多,并且Alice赢了j局
55 if (a_now == 0 && b_now == 0 && alice > bob && alice == j) return true;
56 else return false;
57 }​
58 }

耶~

 

XTU OJ 程设训练 1407 Alice and Bob的更多相关文章

  1. XTU OJ 1209 Alice and Bob 2014(嘉杰信息杯ACM/ICPC湖南程序设计邀请赛暨第六届湘潭市程序设计竞赛)

    Problem Description The famous "Alice and Bob" are playing a game again. So now comes the ...

  2. 计蒜客 ACM训练联盟周赛 第一场 Alice和Bob的Nim游戏 矩阵快速幂

    题目描述 众所周知,Alice和Bob非常喜欢博弈,而且Alice永远是先手,Bob永远是后手. Alice和Bob面前有3堆石子,Alice和Bob每次轮流拿某堆石子中的若干个石子(不可以是0个), ...

  3. sdutoj 2608 Alice and Bob

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2608 Alice and Bob Time L ...

  4. ACdream 1112 Alice and Bob(素筛+博弈SG函数)

    Alice and Bob Time Limit:3000MS     Memory Limit:128000KB     64bit IO Format:%lld & %llu Submit ...

  5. 【XSY2190】Alice and Bob VI 树形DP 树剖

    题目描述 Alice和Bob正在一棵树上玩游戏.这棵树有\(n\)个结点,编号由\(1\)到\(n\).他们一共玩\(q\)盘游戏. 在第\(i\)局游戏中,Alice从结点\(a_i\)出发,Bob ...

  6. 博弈 HDOJ 4371 Alice and Bob

    题目传送门 题意:Alice和 Bob轮流写数字,假设第 i 次的数字是S[i] ,那么第 i+1 次的数字 S[i+1] = S[i] + d[k] 或 S[i] - d[k],条件是 S[i+1] ...

  7. 数学--数论--Alice and Bob (CodeForces - 346A )推导

    It is so boring in the summer holiday, isn't it? So Alice and Bob have invented a new game to play. ...

  8. 2016中国大学生程序设计竞赛 - 网络选拔赛 J. Alice and Bob

    Alice and Bob Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  9. bzoj4730: Alice和Bob又在玩游戏

    Description Alice和Bob在玩游戏.有n个节点,m条边(0<=m<=n-1),构成若干棵有根树,每棵树的根节点是该连通块内编号最 小的点.Alice和Bob轮流操作,每回合 ...

  10. Alice and Bob(2013年山东省第四届ACM大学生程序设计竞赛)

    Alice and Bob Time Limit: 1000ms   Memory limit: 65536K 题目描述 Alice and Bob like playing games very m ...

随机推荐

  1. Android笔记--事务处理+数据库版本升级

    事务处理 beginTransaction:开始事务的标志 setTransactionSuccessful:事务成功的标志 endTransaction:结束事务的标志 在上面的图片里面,首先进行事 ...

  2. Android笔记--对话框

    提醒对话框AlertDialog 具体实现: 相关用法: 日期对话框DatePickerDialog DatePicker 具体实现: 使用Dialog选择日期: 时间对话框TimePickerDia ...

  3. 【LeetCode动态规划#05】背包问题的理论分析(基于代码随想录的个人理解,多图)

    背包问题 问题描述 背包问题是一系列问题的统称,具体包括:01背包.完全背包.多重背包.分组背包等(仅需掌握前两种,后面的为竞赛级题目) 下面来研究01背包 实际上即使是最经典的01背包,也不会直接出 ...

  4. windows下使用docker安装hyperf

    https://blog.csdn.net/weixin_39398904/article/details/128469190 http://wiki.fengfengphp.com/zh-cn/ba ...

  5. 数据挖掘系统聚类—R实现

    系统聚类法 聚类就是按照某个特定标准把一个数据集分割成不同的类或簇,最后的结果是希望同类之间的差异性尽可能小,不同类之间的差异性尽可能大.不同的类具有能够表达异于其他类的指标,这样针对不同的类,后续就 ...

  6. flask+gunicorn+nginx部署pytorch/python应用

    1. 基于flask实现python服务Flask是一个使用 Python 编写的轻量级 Web 应用框架.其 WSGI 工具箱采用 Werkzeug ,模板引擎则使用 Jinja2 .Flask使用 ...

  7. python入门教程之十八正则表达式

    re.match函数 re.match 尝试从字符串的起始位置匹配一个模式,如果不是起始位置匹配成功的话,match()就返回none. 函数语法: re.match(pattern, string, ...

  8. 【Voyage】GDOI 2023 旅游记 || ECHO.

    \(\color{#FFFFFF}{那是什么样的旅途呢}\) \(\color{#FFFFFF}{真的会害怕很多东西呢.想想害怕的其实不止这样一件事,便产生了"其实都一样没关系的,都应该踏过 ...

  9. AtCoder Beginner Contest 236 E - Average and Median

    给定一个序列,要求相邻两个数至少选一个,求选出数的最大平均数和最大中位数 \(\text{sol}\):二分答案. 二分平均数\(\text{mid}\),将每个元素减去\(\text{mid}\), ...

  10. idea快捷键--增强for循环

    增强for循环,用于遍历:数组或单列集合 快捷键: 数组.for