这篇文章,我们聊一聊 RocketMQ 的消息轨迹设计思路。

查询消息轨迹可作为生产环境中排查问题强有力的数据支持 ,也是研发同学解决线上问题的重要武器之一。

1 基础概念

消息轨迹是指一条消息从生产者发送到 Broker , 再到消费者消费,整个过程中的各个相关节点的时间、状态等数据汇聚而成的完整链路信息。

当我们需要查询消息轨迹时,需要明白一点:消息轨迹数据是存储在 Broker 服务端,我们需要定义一个主题,在生产者,消费者端定义轨迹钩子

2 开启轨迹

2.1 修改 Broker 配置文件

# 开启消息轨迹
traceTopicEnable=true

2.2 生产者配置

public DefaultMQProducer(final String producerGroup, boolean enableMsgTrace) 

public DefaultMQProducer(final String producerGroup, boolean enableMsgTrace, final String customizedTraceTopic)

在生产者的构造函数里,有两个核心参数:

  • enableMsgTrace:是否开启消息轨迹
  • customizedTraceTopic:记录消息轨迹的 Topic , 默认是: RMQ_SYS_TRACE_TOPIC

执行如下的生产者代码:

public class Producer {
public static final String PRODUCER_GROUP = "mytestGroup";
public static final String DEFAULT_NAMESRVADDR = "127.0.0.1:9876";
public static final String TOPIC = "example";
public static final String TAG = "TagA"; public static void main(String[] args) throws MQClientException, InterruptedException {
DefaultMQProducer producer = new DefaultMQProducer(PRODUCER_GROUP, true);
producer.setNamesrvAddr(DEFAULT_NAMESRVADDR);
producer.start();
try {
String key = UUID.randomUUID().toString();
System.out.println(key);
Message msg = new Message(
TOPIC,
TAG,
key,
("Hello RocketMQ ").getBytes(RemotingHelper.DEFAULT_CHARSET));
SendResult sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult);
} catch (Exception e) {
e.printStackTrace();
}
// 这里休眠十秒,是为了异步发送轨迹消息成功。
Thread.sleep(10000);
producer.shutdown();
}
}

在生产者代码中,我们指定了消息的 key 属性, 便于对于消息进行高性能检索。

执行成功之后,我们从控制台查看轨迹信息。

从图中可以看到,消息轨迹中存储了消息的 存储时间 存储服务器IP发送耗时

2.3 消费者配置

和生产者类似,消费者的构造函数可以传递轨迹参数:

public DefaultMQPushConsumer(final String consumerGroup, boolean enableMsgTrace);

public DefaultMQPushConsumer(final String consumerGroup, boolean enableMsgTrace, final String customizedTraceTopic);

执行如下的消费者代码:

public class Consumer {
public static final String CONSUMER_GROUP = "exampleGruop";
public static final String DEFAULT_NAMESRVADDR = "127.0.0.1:9876";
public static final String TOPIC = "example"; public static void main(String[] args) throws InterruptedException, MQClientException {
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer(CONSUMER_GROUP , true);
consumer.setNamesrvAddr(DEFAULT_NAMESRVADDR);
consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_FIRST_OFFSET);
consumer.subscribe(TOPIC, "*");
consumer.registerMessageListener((MessageListenerConcurrently) (msg, context) -> {
System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread().getName(), msg);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
});
consumer.start();
System.out.printf("Consumer Started.%n");
}
}

3 实现原理

轨迹的实现原理主要是在生产者发送、消费者消费时添加相关的钩子。 因此,我们只需要了解钩子的实现逻辑即可。

下面的代码是 DefaultMQProducer 的构造函数。

public DefaultMQProducer(final String namespace, final String producerGroup, RPCHook rpcHook,
boolean enableMsgTrace, final String customizedTraceTopic) {
this.namespace = namespace;
this.producerGroup = producerGroup;
defaultMQProducerImpl = new DefaultMQProducerImpl(this, rpcHook);
// if client open the message trace feature
if (enableMsgTrace) {
try {
//异步轨迹分发器
AsyncTraceDispatcher dispatcher = new AsyncTraceDispatcher(producerGroup, TraceDispatcher.Type.PRODUCE, customizedTraceTopic, rpcHook);
dispatcher.setHostProducer(this.defaultMQProducerImpl);
traceDispatcher = dispatcher;
// 发送消息时添加执行钩子
this.defaultMQProducerImpl.registerSendMessageHook(
new SendMessageTraceHookImpl(traceDispatcher));
// 结束事务时添加执行钩子
this.defaultMQProducerImpl.registerEndTransactionHook(
new EndTransactionTraceHookImpl(traceDispatcher));
} catch (Throwable e) {
log.error("system mqtrace hook init failed ,maybe can't send msg trace data");
}
}
}

当是否开启轨迹开关打开时,创建异步轨迹分发器 AsyncTraceDispatcher ,然后给默认的生产者实现类在发送消息的钩子 SendMessageTraceHookImpl

//发送消息时添加执行钩子
this.defaultMQProducerImpl.registerSendMessageHook(new SendMessageTraceHookImpl(traceDispatcher));

我们把生产者发送消息的流程简化如下代码 :

//DefaultMQProducerImpl#sendKernelImpl
this.executeSendMessageHookBefore(context);
// 发生消息
this.mQClientFactory.getMQClientAPIImpl().sendMessage(....)
// 生产者发送消息后会执行
this.executeSendMessageHookAfter(context);

进入SendMessageTraceHookImpl 类 ,该类主要有两个方法 sendMessageBefore sendMessageAfter

1、sendMessageBefore 方法

public void sendMessageBefore(SendMessageContext context) {
//if it is message trace data,then it doesn't recorded
if (context == null || context.getMessage().getTopic().startsWith(((AsyncTraceDispatcher) localDispatcher).getTraceTopicName())) {
return;
}
//build the context content of TuxeTraceContext
TraceContext tuxeContext = new TraceContext();
tuxeContext.setTraceBeans(new ArrayList<TraceBean>(1));
context.setMqTraceContext(tuxeContext);
tuxeContext.setTraceType(TraceType.Pub);
tuxeContext.setGroupName(NamespaceUtil.withoutNamespace(context.getProducerGroup()));
//build the data bean object of message trace
TraceBean traceBean = new TraceBean();
traceBean.setTopic(NamespaceUtil.withoutNamespace(context.getMessage().getTopic()));
traceBean.setTags(context.getMessage().getTags());
traceBean.setKeys(context.getMessage().getKeys());
traceBean.setStoreHost(context.getBrokerAddr());
traceBean.setBodyLength(context.getMessage().getBody().length);
traceBean.setMsgType(context.getMsgType());
tuxeContext.getTraceBeans().add(traceBean);
}

发送消息之前,先收集消息的 topic 、tag、key 、存储 Broker 的 IP 地址、消息体的长度等基础信息,并将消息轨迹数据存储在调用上下文中。

2、sendMessageAfter 方法

public void sendMessageAfter(SendMessageContext context) {
// ...省略部分代码
TraceContext tuxeContext = (TraceContext) context.getMqTraceContext();
TraceBean traceBean = tuxeContext.getTraceBeans().get(0);
int costTime = (int) ((System.currentTimeMillis() - tuxeContext.getTimeStamp()) / tuxeContext.getTraceBeans().size());
tuxeContext.setCostTime(costTime);
if (context.getSendResult().getSendStatus().equals(SendStatus.SEND_OK)) {
tuxeContext.setSuccess(true);
} else {
tuxeContext.setSuccess(false);
}
tuxeContext.setRegionId(context.getSendResult().getRegionId());
traceBean.setMsgId(context.getSendResult().getMsgId());
traceBean.setOffsetMsgId(context.getSendResult().getOffsetMsgId());
traceBean.setStoreTime(tuxeContext.getTimeStamp() + costTime / 2);
localDispatcher.append(tuxeContext);
}

跟踪对象里会保存 costTime (消息发送时间)、success (是否发送成功)、regionId (发送到 Broker 所在的分区) 、 msgId (消息 ID,全局唯一)、offsetMsgId (消息物理偏移量) ,storeTime (存储时间 ) 。

存储时间并没有取消息的实际存储时间,而是估算出来的:客户端发送时间的一般的耗时表示消息的存储时间。

最后将跟踪上下文添加到本地轨迹分发器:

localDispatcher.append(tuxeContext);

下面我们分析下轨迹分发器的原理:

public AsyncTraceDispatcher(String group, Type type, String traceTopicName, RPCHook rpcHook) {
// 省略代码 ....
this.traceContextQueue = new ArrayBlockingQueue<TraceContext>(1024);
this.appenderQueue = new ArrayBlockingQueue<Runnable>(queueSize);
if (!UtilAll.isBlank(traceTopicName)) {
this.traceTopicName = traceTopicName;
} else {
this.traceTopicName = TopicValidator.RMQ_SYS_TRACE_TOPIC;
}
this.traceExecutor = new ThreadPoolExecutor(//
10,
20,
1000 * 60,
TimeUnit.MILLISECONDS,
this.appenderQueue,
new ThreadFactoryImpl("MQTraceSendThread_"));
traceProducer = getAndCreateTraceProducer(rpcHook);
}
public void start(String nameSrvAddr, AccessChannel accessChannel) throws MQClientException {
if (isStarted.compareAndSet(false, true)) {
traceProducer.setNamesrvAddr(nameSrvAddr);
traceProducer.setInstanceName(TRACE_INSTANCE_NAME + "_" + nameSrvAddr);
traceProducer.start();
}
this.accessChannel = accessChannel;
this.worker = new Thread(new AsyncRunnable(), "MQ-AsyncTraceDispatcher-Thread-" + dispatcherId);
this.worker.setDaemon(true);
this.worker.start();
this.registerShutDownHook();
}

上面的代码展示了分发器的构造函数和启动方法,构造函数创建了一个发送消息的线程池 traceExecutor ,启动 start 后会启动一个 worker线程

class AsyncRunnable implements Runnable {
private boolean stopped;
@Override
public void run() {
while (!stopped) {
synchronized (traceContextQueue) {
long endTime = System.currentTimeMillis() + pollingTimeMil;
while (System.currentTimeMillis() < endTime) {
try {
TraceContext traceContext = traceContextQueue.poll(
endTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS
);
if (traceContext != null && !traceContext.getTraceBeans().isEmpty()) {
// get the topic which the trace message will send to
String traceTopicName = this.getTraceTopicName(traceContext.getRegionId()); // get the traceDataSegment which will save this trace message, create if null
TraceDataSegment traceDataSegment = taskQueueByTopic.get(traceTopicName);
if (traceDataSegment == null) {
traceDataSegment = new TraceDataSegment(traceTopicName, traceContext.getRegionId());
taskQueueByTopic.put(traceTopicName, traceDataSegment);
} // encode traceContext and save it into traceDataSegment
// NOTE if data size in traceDataSegment more than maxMsgSize,
// a AsyncDataSendTask will be created and submitted
TraceTransferBean traceTransferBean = TraceDataEncoder.encoderFromContextBean(traceContext);
traceDataSegment.addTraceTransferBean(traceTransferBean);
}
} catch (InterruptedException ignore) {
log.debug("traceContextQueue#poll exception");
}
}
// NOTE send the data in traceDataSegment which the first TraceTransferBean
// is longer than waitTimeThreshold
sendDataByTimeThreshold();
if (AsyncTraceDispatcher.this.stopped) {
this.stopped = true;
}
}
}
}

worker 启动后,会从轨迹上下文队列 traceContextQueue 中不断的取出轨迹上下文,并将上下文转换成轨迹数据片段 TraceDataSegment

为了提升系统的性能,并不是每一次从队列中获取到数据就直接发送到 MQ ,而是积累到一定程度的临界点才触发这个操作,我们可以简单的理解为批量操作

这里面有两个维度 :

  1. 轨迹数据片段的数据大小大于某个数据大小阈值。笔者认为这段 RocketMQ 4.9.4 版本代码存疑,因为最新的 5.0 版本做了优化。

    if (currentMsgSize >= traceProducer.getMaxMessageSize()) {
    List<TraceTransferBean> dataToSend = new ArrayList(traceTransferBeanList);
    AsyncDataSendTask asyncDataSendTask = new AsyncDataSendTask(traceTopicName, regionId, dataToSend);
    traceExecutor.submit(asyncDataSendTask);
    this.clear();
    }
  2. 当前时间 - 轨迹数据片段的首次存储时间 是否大于刷新时间 ,也就是每500毫秒刷新一次。

    private void sendDataByTimeThreshold() {
    long now = System.currentTimeMillis();
    for (TraceDataSegment taskInfo : taskQueueByTopic.values()) {
    if (now - taskInfo.firstBeanAddTime >= waitTimeThresholdMil) {
    taskInfo.sendAllData();
    }
    }
    }

轨迹数据存储的格式如下:

TraceBean bean = ctx.getTraceBeans().get(0);
//append the content of context and traceBean to transferBean's TransData
case Pub: {
sb.append(ctx.getTraceType()).append(TraceConstants.CONTENT_SPLITOR)
.append(ctx.getTimeStamp()).append(TraceConstants.CONTENT_SPLITOR)
.append(ctx.getRegionId()).append(TraceConstants.CONTENT_SPLITOR)
.append(ctx.getGroupName()).append(TraceConstants.CONTENT_SPLITOR)
.append(bean.getTopic()).append(TraceConstants.CONTENT_SPLITOR)
.append(bean.getMsgId()).append(TraceConstants.CONTENT_SPLITOR)
.append(bean.getTags()).append(TraceConstants.CONTENT_SPLITOR)
.append(bean.getKeys()).append(TraceConstants.CONTENT_SPLITOR)
.append(bean.getStoreHost()).append(TraceConstants.CONTENT_SPLITOR)
.append(bean.getBodyLength()).append(TraceConstants.CONTENT_SPLITOR)
.append(ctx.getCostTime()).append(TraceConstants.CONTENT_SPLITOR)
.append(bean.getMsgType().ordinal()).append(TraceConstants.CONTENT_SPLITOR)
.append(bean.getOffsetMsgId()).append(TraceConstants.CONTENT_SPLITOR)
.append(ctx.isSuccess()).append(TraceConstants.FIELD_SPLITOR);
}
break;

下图展示了事务轨迹消息数据,每个数据字段是按照 CONTENT_SPLITOR 分隔。

注意:

分隔符 CONTENT_SPLITOR = (char) 1 它在内存中的值是:00000001 , 但是 char i = '1' 它在内存中的值是 49 ,即 00110001。


参考资料:

阿里云文档:

https://help.aliyun.com/zh/apsaramq-for-rocketmq/cloud-message-queue-rocketmq-4-x-series/user-guide/query-a-message-trace

石臻臻:

https://mp.weixin.qq.com/s/saYD3mG9F1z-oAU6STxewQ

聊聊 RocketMQ 消息轨迹的更多相关文章

  1. RocketMQ消息轨迹-设计篇

    目录 1.消息轨迹数据格式 2.记录消息轨迹 3.如何存储消息轨迹数据 @(本节目录) RocketMQ消息轨迹主要包含两篇文章:设计篇与源码分析篇,本节将详细介绍RocketMQ消息轨迹-设计相关. ...

  2. 源码分析RocketMQ消息轨迹

    目录 1.发送消息轨迹流程 1.1 DefaultMQProducer构造函数 1.2 SendMessageTraceHookImpl钩子函数 1.3 TraceDispatcher实现原理 2. ...

  3. RocketMQ之八:重试队列,死信队列,消息轨迹

    问题思考 死信队列的应用场景? 死信队列中的数据是如何产生的? 如何查看死信队列中的数据? 死信队列的读写权限? 死信队列如何消费? 重试队列和死信队列的配置 消息轨迹 1.应用场景 一般应用在当正常 ...

  4. RocketMq消息队列使用

    最近在看消息队列框架 ,alibaba的RocketMQ单机支持1万以上的持久化队列,支持诸多特性, 目前RocketMQ在阿里集团被广泛应用在订单,交易,充值,流计算,消息推送,日志流式处理,bin ...

  5. 程序重启RocketMQ消息重复消费

    最近在调试RocketMQ消息发送与消费的Demo时,发现一个问题:只要重启程序,RocketMQ消息就会重复消费. 那么这是什么原因导致的,又该如何解决呢? 经过一番排查,发现程序使用的Rocket ...

  6. RocketMQ 消息队列单机部署及使用

    转载请注明来源:http://blog.csdn.net/loongshawn/article/details/51086876 相关文章: <RocketMQ 消息队列单机部署及使用> ...

  7. 关于RocketMQ消息消费与重平衡的一些问题探讨

    其实最好的学习方式就是互相交流,最近也有跟网友讨论了一些关于 RocketMQ 消息拉取与重平衡的问题,我姑且在这里写下我的一些总结. ## 关于 push 模式下的消息循环拉取问题 之前发表了一篇关 ...

  8. rocketMq消息的发送和消息消费

    rocketMq消息的发送和消息消费 一.消息推送 public void pushMessage() { String message = "推送消息内容!"; try { De ...

  9. RocketMQ(消息重发、重复消费、事务、消息模式)

    分布式开放消息系统(RocketMQ)的原理与实践 RocketMQ基础:https://github.com/apache/rocketmq/tree/rocketmq-all-4.5.1/docs ...

  10. RocketMQ消息丢失解决方案:同步刷盘+手动提交

    前言 之前我们一起了解了使用RocketMQ事务消息解决生产者发送消息时消息丢失的问题,但使用了事务消息后消息就一定不会丢失了吗,肯定是不能保证的. 因为虽然我们解决了生产者发送消息时候的消息丢失问题 ...

随机推荐

  1. Spring6 初始

    Spring6 初始 @ 目录 Spring6 初始 每博一文案: 1. 初始 Spring6 1.1 OCP开闭原则 1.2 依赖倒置原则DIP 1.3 控制反转IoC 2. Spring 初始 2 ...

  2. ArrayList按指定大小分割集合

    ArrayList按指定大小分割集合 项目中使用SpringDataJpa的使用,用到了批量操作,发现框架本身有限制,长度不能超过1000,所以就百度了一下,网上都说是分段处理,也有说用OR的,但数据 ...

  3. C# Task 实现任务超时取消、超时取消然后重试 超过重试最大次数就结束。

    任务超时取消 示例 public static async Task TimeoutCancelTask() { CancellationTokenSource cts = new Cancellat ...

  4. TypeScript: Object is of type 'unknown'.

    错误代码展示 解决方案 将e声明为any类型,如下所示: // 修改蛇的X和Y值 try { this.snake.X = X; this.snake.Y = Y; }catch(e:any){ // ...

  5. 用 Tensorflow.js 做了一个动漫分类的功能(一)

    前言: 浏览某乎网站时发现了一个分享各种图片的博主,于是我顺手就保存了一些.但是一张一张的保存实在太麻烦了,于是我就想要某虫的手段来处理.这样保存的确是很快,但是他不识图片内容,最近又看了 mobil ...

  6. [etcd]简介与安装

    简介 etcd是一个采用Raft协议实现强一致性的分布式键值数据库,它提供了一种可靠的方式存储需要被分布式系统或机器集群访问的数据. 常见使用场景:服务注册与发现.键值对存储.消息发布和订阅.分布式锁 ...

  7. IDApython的学习

    IDApython的学习 我的IDA情况:IDA7.7,idapython3.8 这个可以作为文件导入和命令行内输入,我一般习惯命令行 这里要注意是python不是IDC 访问原数据 idc.get_ ...

  8. 强化学习 Proximal Policy Optimization (PPO)

    参考: 李宏毅老师课件 PPO = Policy Gradient 从 On-policy 到 Off-policy, 再加一些constraint Policy Gradient Basic Con ...

  9. P1830题解

    思路: 利用桶存储轰炸区域,双重循环. 在存储轰炸区域时将次数刷新,也就是pos[j][k]=i;. 下面是核心代码: for(int i=1;i<=x;i++) { int x1,x2,y1, ...

  10. 如何使用关键词搜索API接口获取到快手的商品

    如果您想使用关键词搜索API接口获取到快手的商品,可以通过以下步骤实现: 1. 首先注册账号.根据文档申请相应的接口权限. 2. 确定需要使用的API接口.对于商品搜索,您可以查看相关的API文档以获 ...