题目大意:

给定2个数a , b,假定b>=a总是从b中取走一个a的整数倍,也就是让 b-k*a(k*a<=b)

每人执行一步这个操作,最后得到0的人胜利结束游戏

(0,a)是一个终止态P(必胜态)

始终假设b>=a

那么(a,b)b%a==0 , 那么就是 必败态 N

如果2*a>b>a 那么只能选择进入 (a , b-a)不确定什么状态

因为每个人都很聪明,所以对于碰到一个a ,b的局面

如果 b>a*2 , 那么应该知道 (a , b%a) 是不是一个必胜态,如果不是,那么这个聪明人就总会进入(a , b%a+a) ,就能逼迫对方进入 (a , b%a) 这个必败态

如果 (a , b%a) 是一个必胜态,那么聪明人就会自己进入这个状态

所以 b>2*a的时候,下个人肯定是必胜的,也就是下个人必然进入必胜态,所以这是一个必败态

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; bool dfs(int a , int b)
{
if(a>b) swap(a , b);
if(a == ) return true;
if(b%a == || b > *a) return false; bool flag1 = dfs(a , b%a);
bool flag2 = false;
if(b > *a) flag2 = dfs(a , b%a+a);
if(flag1 || flag2) return false;
return true;
} int main()
{
// freopen("a.in" , "r" , stdin);
int a,b;
while(scanf("%d%d" , &a , &b) , a||b)
{
if(dfs(a , b)) puts("Ollie wins");
else puts("Stan wins");
}
return ;
}

HDU 1525 Euclid Game的更多相关文章

  1. HDU 1525 Euclid's Game 博弈

    Euclid's Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  2. HDU 1525 Euclid's Game (博弈)

    Euclid's Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  3. hdu 1525 Euclid's Game 博弈论

    思路:两个数a和b,总会出现的一个局面是b,a%b,这是必然的,如果a>=b&&a<2*b,那么只有一种情况,直接到b,a%b.否则有多种情况. 对于a/b==1这种局面, ...

  4. HDU 1525 Euclid's Game

    题目大意: 题目给出了两个正数a.b 每次操作,大的数减掉小的数的整数倍.一个数变为0 的时候结束. 谁先先把其中一个数减为0的获胜.问谁可以赢.Stan是先手. 题目思路: 无论a,b的值为多少,局 ...

  5. hdu 1525 Euclid's Game【 博弈论】

    Two players, Stan and Ollie, play, starting with two natural numbers. Stan, the first player, subtra ...

  6. HDU 1525 类Bash博弈

    给两数a,b,大的数b = b - a*k,a*k为不大于b的数,重复过程,直到一个数为0时,此时当前操作人胜. 可以发现如果每次b=b%a,那么GCD的步数决定了先手后手谁胜,而每次GCD的一步过程 ...

  7. A - 无聊的游戏 HDU - 1525(博弈)

    A - 无聊的游戏 HDU - 1525 疫情当下,有两个很无聊的人,小A和小B,准备玩一个游戏,玩法是这样的,从两个自然数开始比赛.第一个玩家小A从两个数字中的较大者减去两个数字中较小者的任何正倍数 ...

  8. HDU 1525 (博弈) Euclid's Game

    感觉这道题用PN大法好像不顶用了,可耻地看了题解. 考虑一下简单的必胜状态,某一个数是另一个数的倍数的时候是必胜状态. 从这个角度考虑一下:游戏进行了奇数步还是偶数步决定了哪一方赢. 如果b > ...

  9. Day11 - H - Euclid's Game HDU - 1525

    Two players, Stan and Ollie, play, starting with two natural numbers. Stan, the first player, subtra ...

随机推荐

  1. YUM报错及解决办法

    [root@xuegod60 ~]# yum clean all Loaded plugins: product-id, refresh-packagekit, security, subscript ...

  2. 在spring data jpa中使用自定义转换器之使用枚举转换

    转载请注明http://www.cnblogs.com/majianming/p/8553217.html 在项目中,经常会出现这样的情况,一个实体的字段名是枚举类型的 我们在把它存放到数据库中是需要 ...

  3. [转]C#Linq中的Union All/Union/Intersect和Top/Bottom和Paging和SqlMethods,skip,take,takewhile,skipwhile,编译查询等

    本文转自:http://www.cnblogs.com/suizhikuo/p/3791799.html 我们继续讲解LINQ to SQL语句,这篇我们来讨论Union All/Union/Inte ...

  4. php数组转为字符串,数据库存储

    php对象转字符存储数据库的方法. 总所周知对象是不能直接存储到数据库的.那么我们用什么样的方法能够存储到数据库中能? 方法一:序列化serialize和unserialize 序列化对象serial ...

  5. poj3662 Telephone Lines

    思路: 二分+最短路.最短路也可以用来计算从a到达b所需的边权不超过x的边的数量. 实现: #include <cstdio> #include <cmath> #includ ...

  6. 2017-11-29 HTML5样式、链接和表格

    HTML5样式.链接和表格HTML5列表<ol> 有序列表<ul> 无序列表<li> 列表项 <dl> 列表<dt> 列表项<dd&g ...

  7. JVM最多能创建多少个线程: unable to create new native thread

    转载自:http://www.rigongyizu.com/jvm-max-threads/ 有应用报出这样的异常“java.lang.OutOfMemoryError: unable to crea ...

  8. call、apply/bind的区别和用法(简单粗暴的解释)

    var obj1={ name:"bob", age:20 } var obj2={ name:"coco", age:22 } function getAge ...

  9. win8怎么打开或关闭快速启动(进入BIOS前的设置)

    win8系统之后,系统添加了快速启动功能,这让Windows的启动速度快了不少.但是,任何事物有利有弊,相信不少人在进入BIOS或者重装系统时遇到了麻烦.接下来我们看看在win8及以上版本怎么打开或关 ...

  10. SCCM大致安装过程,参考前辈教程完成部署

    本安装sccm主站点服务器准备 参考:http://stephen1991.blog.51cto.com/8959108/1529864 1.  准备三台服务器 ,注:所有服务器需要安装 .net3. ...