传送门

题意

计算

\(\sum_{i=1}^n(kmodi)\)

分析

1.n>k 直接输出k*(n-k)

2.n<=k

我们发现k/i相同的k%i构成一个等差数列,那么我们从k/i->2枚举,计算等差数列,最后处理一个[1,sqrt(k))的区间数就好了

复杂度:\(2*O(sqrt(k))\)

trick

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
ll n,k,ans,p,tmp,s,e; int main()
{
while(scanf("%lld%lld",&n,&k)==2)
{
ans=0;
if(n>k) ans+=k*(n-k);//直接处理
p=(ll)sqrt(1.0*k);//需要处理的等差数列个数
for(ll i=p;i>=2;--i)
{
s=k/i,e=k/(i-1);//等差数列的首尾项
if(s>n) break;
if(e>n) e=n;
ans+=(k%(s+1)+k%e)*(e-s)/2;
}
for(ll i=2;i<=k/p&&i<=n;++i) ans+=k%i;//最后处理[1,sqrt(n))
printf("%lld\n",ans);
}
}

POJ2800:Joseph's Problem(等差数列)的更多相关文章

  1. UVa 1363 (数论 数列求和) Joseph's Problem

    题意: 给出n, k,求 分析: 假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p 则对于某个区间,i∈[l, r],k/i的整数部分 ...

  2. UVA 1363 Joseph's Problem 找规律+推导 给定n,k;求k%[1,n]的和。

    /** 题目:Joseph's Problem 链接:https://vjudge.net/problem/UVA-1363 题意:给定n,k;求k%[1,n]的和. 思路: 没想出来,看了lrj的想 ...

  3. Joseph's Problem UVALive - 3521(等差数列的应用)

    题意:给定n, k,求出∑ni=1(k mod i) 思路:由于n和k都很大,直接暴力是行不通的,然后在纸上画了一些情况,就发现其实对于k/i相同的那些项是形成等差数列的,于是就可以把整个序列进行拆分 ...

  4. Problem J. Joseph’s Problem 约瑟夫问题--余数之和

    链接:https://vjudge.net/problem/UVA-1363 题意:给出n  k,当 i 属于 1~n 时 ,求解 n% i 的和 n 和 k 的范围都是 1 到 10^9; 商相同 ...

  5. UVa 1363 - Joseph's Problem(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  6. UVA 1363 Joseph's Problem

    https://vjudge.net/problem/UVA-1363 n 题意:求 Σ  k%i i=1 除法分块 如果 k/i==k/(i+1)=p 那么 k%(i+1)=k-(i+1)*p= k ...

  7. LA 3521 Joseph's Problem

    题意:给你正整数n和k,然后计算从i到n k%i的和: 思路:如果n小于1000000,直接暴力计算,然后大于1000000的情况,然后在讨论n和k的大小,根据k%i的情况,你会发现规律,是多个等差数 ...

  8. UVA1363 - Joseph's Problem(数学,迷之优化)

    题意:给出n和k,1≤n,k≤1e9,计算 切入点是k/i 和 k/(i+1)差距不大.令pi = k/i, ri = k%i.如果pi+1 == pi,那么ri+1 == k - pi(i+1) = ...

  9. UVa1363 Joseph's Problem

    把整个序列进行拆分成[k,k/2),[k/2, k/3), [k/3,k/4)...k[k/a, k/b)的形式,对于k/i(整除)相同的项,k%i成等差数列. /*by SilverN*/ #inc ...

随机推荐

  1. hdu 4043 FXTZ II [ 概率 + Java大数]

    传送门 FXTZ II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  2. MySQL的字符串连接函数CONCAT, CONCAT_WS,GROUP_CONTACT

    本文转载自de.cel<MySQL的字符串连接函数CONCAT, CONCAT_WS,GROUP_CONCAT>   在搜索Mysql中怎么实现把一列的多行数据合并成一行时,找到了grou ...

  3. python学习之-- 事件驱动模型

    目前主流的网络驱动模型:事件驱动模型 事件驱动模型:也属于生产者/消费者结构,通过一个队列,保存生产者触发的事件,队列另一头是一个循环从队列里不断的提取事件.大致流程如下:1:首先生成一个事件消息队列 ...

  4. lombok注解

    官方文档:@EqualsAndHashCode 转:https://blog.csdn.net/zhanlanmg/article/details/50392266 1. 此注解会生成equals(O ...

  5. zmq.error.ZMQError: Address already in use

    1.如下代码,启动的时候python app.py会报如题的错误 app.py #!/user/bin python # -*- coding:utf-8 -*- import os from dat ...

  6. 转: java DES的算法片码

    转自: https://www.zhihu.com/question/36767829 作者:郭无心链接:https://www.zhihu.com/question/36767829/answer/ ...

  7. Office WORD如何为每一页设置不同的页眉页脚

    如下图所示,我想要为封面和目录,摘要等等设置不同的页眉页脚(一般封面和目录不需要页脚)   而从正文开始,套用相同的页眉和以页数作为页脚(注意"第一章 绪论"不是这个文档的第一页) ...

  8. A Single Channel with Multiple Consumers RabbitMQ

    http://stackoverflow.com/questions/30696351/a-single-channel-with-multiple-consumers-rabbitmq up vot ...

  9. 提升Android编译速度

    Android codebase都非常大.编译一次都须要花非常多时间.假设是preloader/lk/bootimage还好,可是Android的话都是非常久. 实际上这个编译时间还是能够进一步缩短! ...

  10. 基于字符的打印机 图形化打印机 PostScript解释器

    60行*80字符/行=4800字节 300点/英寸(300DPI)   8*10英寸/页打印区域 光栅图像处理器  RIP PostScript程序--- > PostScript解释器 --& ...