使用keras的LSTM进行预测----实战练习
代码
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM import marksix_1
import talib as ta lt = marksix_1.Marksix()
lt.load_data(period=500) # 指标序列
m = 2
series = lt.adapter(loc='', zb_name='mod', args=(m, lt.get_mod_list(m)), tf_n=0) # 实时线
close = np.cumsum(series).astype(float) # 布林线
timeperiod = 5
upper, middle, lower = ta.BBANDS(close, timeperiod=timeperiod, nbdevup=2, nbdevdn=2, matype=0) # 趋势
qushi1 = np.where(close-middle < 0, 0, 1)# 实时线在均线上、下方
qushi2 = np.where(middle[1:] - middle[:-1] < 0, 0, 1) # 均线上、下行(长度少了1) # 标签转化为0,1
y = np.where(series==-1, 0, 1) # 构造特征(注意,已经归一化,全部为非负数)
f = upper-lower
f = f[timeperiod:] # 去掉了前面timeperiod个nan数据!!!
f = (f - f.min()) / (f.max() - f.min()) # 归一化
y = y[timeperiod:]
qushi1 = qushi1[timeperiod:]
qushi2 = qushi2[timeperiod-1:]
features = np.column_stack([y, qushi1, qushi2, f]) # 特征:[标签、趋势1、趋势2、布林宽度] #
data_len = len(series)
time_steps = 3 # 将数据转化为[样本数, 时间步数, 特征数]的形式
X = [features[i:i+time_steps] for i in range(data_len-time_steps-timeperiod)] # [samples, time steps * features]
X = np.reshape(X, (data_len - time_steps-timeperiod, time_steps, -1)) # [samples, time steps, features] # 标签长度一致
y = y[time_steps:] # one-hot编码
y = np.eye(2)[y] # 划分训练数据、测试数据
train_X, test_X = X[:-20], X[-20:]
train_y, test_y = y[:-20], y[-20:] # =================================
model = Sequential()
model.add(LSTM(64, input_shape=(X.shape[1], X.shape[2])))
model.add(Dense(y.shape[1], activation='softmax')) # 输出各类的概率(softmax)
model.compile(loss='categorical_crossentropy', # 单标签,多分类(categorical_crossentropy)
optimizer='adam',
metrics=['accuracy']) model.fit(train_X, train_y, epochs=500, batch_size=1, verbose=2) #检查模型在测试集上的表现是否良好
test_loss, test_acc = model.evaluate(test_X, test_y)
print('test_acc:', test_acc)
效果图


结论
只测试了mod 2的情况,效果不好.
训练数据精度可以达到三分之二左右,测试数据的精度只有四分之一。头脑风暴,几乎可以反其道而行之!可能不失为可行之策。
下一步:
1.画出后20个数据k线图,看是否是震荡区间,亦或是趋势区间
2.换别的指标看看
使用keras的LSTM进行预测----实战练习的更多相关文章
- Kesci: Keras 实现 LSTM——时间序列预测
博主之前参与的一个科研项目是用 LSTM 结合 Attention 机制依据作物生长期内气象环境因素预测作物产量.本篇博客将介绍如何用 keras 深度学习的框架搭建 LSTM 模型对时间序列做预测. ...
- 基于 Keras 用 LSTM 网络做时间序列预测
目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记 ...
- 用keras实现lstm 利用Keras下的LSTM进行情感分析
1 I either LOVE Brokeback Mountain or think it’s great that homosexuality is becoming more accept ...
- 时间序列深度学习:状态 LSTM 模型预测太阳黑子
目录 时间序列深度学习:状态 LSTM 模型预测太阳黑子 教程概览 商业应用 长短期记忆(LSTM)模型 太阳黑子数据集 构建 LSTM 模型预测太阳黑子 1 若干相关包 2 数据 3 探索性数据分析 ...
- 基于 Keras 用深度学习预测时间序列
目录 基于 Keras 用深度学习预测时间序列 问题描述 多层感知机回归 多层感知机回归结合"窗口法" 改进方向 扩展阅读 本文主要参考了 Jason Brownlee 的博文 T ...
- Pytorch循环神经网络LSTM时间序列预测风速
#时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大 ...
- 基于 Keras 的 LSTM 时间序列分析——以苹果股价预测为例
简介 时间序列简单的说就是各时间点上形成的数值序列,时间序列分析就是通过观察历史数据预测未来的值.预测未来股价走势是一个再好不过的例子了.在本文中,我们将看到如何在递归神经网络的帮助下执行时间序列分析 ...
- 手把手教你用 Keras 实现 LSTM 预测英语单词发音
1. 动机 我近期在研究一个 NLP 项目,根据项目的要求,需要能够通过设计算法和模型处理单词的音节 (Syllables),并对那些没有在词典中出现的单词找到其在词典中对应的押韵词(注:这类单词类似 ...
- LSTM时间序列预测及网络层搭建
一.LSTM预测未来一年某航空公司的客运流量 给你一个数据集,只有一列数据,这是一个关于时间序列的数据,从这个时间序列中预测未来一年某航空公司的客运流量.数据形式: 二.实战 1)数据下载 你可以go ...
随机推荐
- MySQL 基本语句(2)
1.创建数据库 :create database 名称 [charset 字符集 collate 校对规则] ; 如: drop database if exists `mydb` ; # 若存在就 ...
- DOIS 2018 — OneAPM 蓝海讯通以数据为中心的 AIOps 平台亮相
AIOps 近两年开始在运维圈子里面火了起来.一夜间传统和新兴的运维管理软件供应商,IT 运维系统开发商,大数据厂商,人工智能算法提供商,还有 BAT,大家都在谈论这个话题.在短短的不到 1 年时间中 ...
- [20181015]12C SQL Translation Framework.txt
[20181015]12C SQL Translation Framework.txt --//12c提供一个dba改写sql语句的可能性,实际上10g,11g之前也有一个包DBMS_ADVANCED ...
- spring-AOP(面向切面编程)-注解方式配置
项目结构: 切面类: package edu.nf.ch12.service.aspect; import org.aspectj.lang.JoinPoint; import org.aspectj ...
- 当年写的如何成为一名MSSQL DBA
很多开发人员都想成为一名数据库培训,也有很多人一开始就把自己定位成为一名DBA,DBA究竟需要掌握些什么知识和技能呢?以下是我 做DBA工作和面试DBA时,整理的一些DBA方面的三十个问 ...
- 孟岩:怎么看待Coin与Token的关系?
由于中英文的隔阂,很多在英文世界里一目了然.不言自明的词汇,翻译成中文之后意义模糊.难以理解.比如在区块链和加密数字货币领域,coin 和 token 的区别,很长时间困扰着我们,并且引发争论. 后来 ...
- ELF文件的加载过程(load_elf_binary函数详解)--Linux进程的管理与调度(十三)
加载和动态链接 从编译/链接和运行的角度看,应用程序和库程序的连接有两种方式. 一种是固定的.静态的连接,就是把需要用到的库函数的目标代码(二进制)代码从程序库中抽取出来,链接进应用软件的目标映像中: ...
- python3+xlwt 读取txt信息并写入到excel中
# coding = utf-8 import os import xlwt import re def readTxt_toExcel(valueList, Pathlist): workbook ...
- Linux常用命令-解压缩篇
前言 Linux常用命令中,有很多用于对文件的压缩或解压,本文将介绍这些解压缩命令中不常见却非常实用的用法. tar tar是linux中最常用的解压缩命令.tar命令可用于处理后缀名为tar,tar ...
- MYSQL的binlog日志
binlog 基本认识 MySQL的二进制日志以事件形式,记录了所有的DDL和DML(除了数据查询语句)语句,及语句执行消耗时间. MySQL的二进制日志是事务安全型的,是MySQL最重要的日志. b ...