【BZOJ2000】[HNOI2000]取石头游戏(贪心,博弈论)

题面

BZOJ

洛谷

题解

这题好神仙啊,窝不会QaQ。

假装一下只有三个元素\(a_{i-1},a_i,a_{i+1}\),并且满足,\(a_{i-1}\le a_i\ge a_{i+1}\)那么肯定是\(a_{i-1}+a_{i+1}\)、\(a_i\)这样子分配的。那么两个人的差就是\(a_{i-1}+a_{i+1}-a_i\),那么我们把\(i\)和旁边两个元素直接合并就好了,反正只要知道了两个人的差和所有元素之和就能还原答案。

不难发现这样子合并完之后序列要么单增要么单减。

我们发现中间被分开的一段段是一个双端队列,可以从两端取。两侧被分割的部分是一个栈,只能一侧取。显然两侧的按照奇偶可以直接分配好谁去哪一侧。而剩下的部分因为单调,所以显然排序之后两个人一个个轮流取就好了。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 1000100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,l,r,fr,top;ll S[MAX],sum,ans;bool vis[MAX];
bool check(int p){if(vis[p]||vis[p-1]||vis[p+1])return false;return S[p-1]<=S[p]&&S[p]>=S[p+1];}
int main()
{
n=read();
for(int i=1;i<=n;++i)
{
S[++top]=read();sum+=S[top];vis[top]=(S[top]==0);fr^=(bool)(S[top]);
while(top>=3&&check(top-1))S[top-2]=S[top-2]+S[top]-S[top-1],top-=2;
}
for(l=1;!vis[l]&&!vis[l+1]&&S[l]>=S[l+1];l+=2)ans+=(S[l]-S[l+1])*(fr?1:-1);
for(r=top;!vis[r]&&!vis[r-1]&&S[r]>=S[r-1];r-=2)ans+=(S[r]-S[r-1])*(fr?1:-1);
top=0;for(int i=l;i<=r;++i)if(!vis[i])S[++top]=S[i];sort(&S[1],&S[top+1]);
for(int i=top;i;--i)ans+=((top-i)&1)?-S[i]:S[i];
cout<<(sum+ans)/2<<' '<<(sum-ans)/2<<endl;
return 0;
}

【BZOJ2000】[HNOI2000]取石头游戏(贪心,博弈论)的更多相关文章

  1. [luogu] P3210 [HNOI2010]取石头游戏(贪心)

    P3210 [HNOI2010]取石头游戏 题目描述 A 公司正在举办一个智力双人游戏比赛----取石子游戏,游戏的获胜者将会获得 A 公司提供的丰厚奖金,因此吸引了来自全国各地的许多聪明的选手前来参 ...

  2. 【BZOJ1413】[ZJOI2009]取石子游戏(博弈论,动态规划)

    [BZOJ1413][ZJOI2009]取石子游戏(博弈论,动态规划) 题面 BZOJ 洛谷 题解 神仙题.jpg.\(ZJOI\)是真的神仙. 发现\(SG\)函数等东西完全找不到规律,无奈只能翻题 ...

  3. bzoj2000 [Hnoi2010]stone 取石头游戏

    Description A 公司正在举办一个智力双人游戏比赛----取石子游戏,游戏的获胜者将会获得 A 公司提供的丰厚奖金,因此吸引了来自全国各地的许多聪明的选手前来参加比赛. 与经典的取石子游戏相 ...

  4. [HNOI2010]STONE取石头游戏

    题目描述 A 公司正在举办一个智力双人游戏比赛----取石子游戏,游戏的获胜者将会获得 A 公司提供的丰厚奖金,因此吸引了来自全国各地的许多聪明的选手前来参加比赛. 与经典的取石子游戏相比,A公司举办 ...

  5. HDU 2516 取石子游戏 (博弈论)

    取石子游戏 Problem Description 1堆石子有n个,两人轮流取.先取者第1次能够取随意多个,但不能所有取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出" ...

  6. 【POJ】1067 取石子游戏(博弈论)

    Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后 ...

  7. 【洛谷2252&HDU1527】取石子游戏(博弈论)

    题面 HDU1527 取石子游戏 洛谷2252 取石子游戏 题解 裸的威佐夫博弈 #include<iostream> #include<cmath> using namesp ...

  8. [bzoj1874][BeiJing2009 WinterCamp]取石子游戏_博弈论

    取石子游戏 bzoj-1874 BeiJing2009 WinterCamp 题目大意:题目链接. 注释:略. 想法: 我们通过$SG$函数的定义来更新$SG$的转移. 如果是寻求第一步的话我们只需要 ...

  9. 洛谷P1288 取数游戏II[博弈论]

    题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...

随机推荐

  1. 51Nod 1668 非010串

    这是昨天上课ChesterKing dalao讲线代时的例题 当时看到这道题就觉得很水,记录一下后面两位的情况然后讨论一下转移即可 由于之前刚好在做矩阵题,所以常规的矩阵快速幂优化也很简单 好我们开始 ...

  2. Spring Boot 2.0 版的开源项目云收藏来了!

    给大家聊一聊云收藏从 Spring Boot 1.0 升级到 2.0 所踩的坑 先给大家晒一下云收藏的几个数据,作为一个 Spring Boot 的开源项目(https://github.com/cl ...

  3. Ubuntu16.04下安装破解secureCRT和secureFX的操作记录

    本地电脑之前安装的是win10,疲于win10频繁的更新和各种兼容问题,果断放弃win10系统,安装了Ubuntu 16.04系统,现在微信.QQ.钉钉.WPS等都已支持linux版本,所以在Ubun ...

  4. bootstrap完善按钮组bug

    .btn.active { border: 1px solid #ff9400 !important; color: #ff9400 !important; } <div class=" ...

  5. 同步手绘板——关于/dev/graphics/fb0权限的获取

    需要先将手机进行root,接着通过代码将/dev/graphics/fb0文件修改为可读的权限

  6. Leetcode——258.各位相加【水题】

    给定一个非负整数 num,反复将各个位上的数字相加,直到结果为一位数. 示例: 输入: 38 输出: 2 解释: 各位相加的过程为:3 + 8 = 11, 1 + 1 = 2. 由于 2 是一位数,所 ...

  7. NopCommerce源码架构

    我们承接以下nop相关的业务,欢迎联系我们. 我们承接NopCommerce定制个性化开发: Nopcommerce二次开发 Nopcommerce主题开发 基于Nopcommerce的二次开发的电子 ...

  8. 关于<T> T[] toArray(T[] a) 方法

    http://mopishv0.blog.163.com/blog/static/5445593220101016102129741/ private List<String> uploa ...

  9. [转帖]紫光展锐5G芯片

    紫光展锐5G芯片已流片:7nm工艺 2019年问世   https://news.mydrivers.com/1/612/612346.htm 本文转载自超能网,其他媒体转载需经超能网同意 高通骁龙X ...

  10. Ubuntu16.04.3安装以及简单配置使用

    1. 官网下载ubuntu16.04.3的iso 2.上传至esxi 3. 中文安装界面有问题,使用english进行安装. 4. server版本的应该不带gui的界面进行安装... 5.使用非ro ...