Spark基础脚本入门实践3:Pair RDD开发
Pair RDD转化操作
val rdd = sc.parallelize(List((1,2),(3,4),(3,6)))
//reduceByKey,通过key来做合并
val r1 = rdd.reduceByKey((x,y)=>x+y).collect()
val r1 = rdd.reduceByKey(_+_).collect()
res0: Array[(Int, Int)] = Array((1,2), (3,10))
val r1 = rdd.reduceByKey((x,y)=>(x max y)).collect()
r1: Array[(Int, Int)] = Array((1,2), (3,6))
//groupByKey,通过key来做分组
val r2=rdd.groupByKey().collect()
r2: Array[(Int, Iterable[Int])] = Array((1,CompactBuffer(2)), (3,CompactBuffer(4, 6)))
//mapValues,对每个值应用函数,不改变键
val r3=rdd.mapValues(x => x+10 ).collect()
r3: Array[(Int, Int)] = Array((1,12), (3,14), (3,16))
//flatMapValues,对每个值应用一个返回迭代器函数,每个元素生成一个键值对
val r4=rdd.flatMapValues(x => x to 10 ).collect()
r4: Array[(Int, Int)] = Array((1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (1,9), (1,10), (3,4), (3,5), (3,6), (3,7), (3,8), (3,9), (3,10), (3,6), (3,7), (3,8), (3,9), (3,10))
//keys,返回键
val r5=rdd.keys.collect()
//values,仅返回值
val r5=rdd.values.collect()
r5: Array[Int] = Array(2, 4, 6)
//sortByKey 排序后返回
scala> val r6=rdd.sortBy(x => x, false).collect()
r6: Array[(Int, Int)] = Array((3,6), (3,4), (1,2))
scala> val r6=rdd.sortBy(x => x, true).collect()
r6: Array[(Int, Int)] = Array((1,2), (3,4), (3,6))
需要注意的是,Pair RDD也是RDD,也可以使用RDD函数
比如
scala> val r7=rdd.filter{case (key,value)=>value<20}.collect()
r7: Array[(Int, Int)] = Array((1,2), (3,4), (3,6))
scala> val r7=rdd.filter{case (key,value)=>value<5}.collect()
r7: Array[(Int, Int)] = Array((1,2), (3,4))
scala> val r7=rdd.filter{case (k,v)=>v<20}.collect()
r7: Array[(Int, Int)] = Array((1,2), (3,4), (3,6))
统计单词重复的次数
方法1:
val input = sc.textFile("file:///usr/local/spark/README.md")
val words = input.flatMap(x => x.split(" "))
val count = words.countByValue()
方法2:用传统的map-reduce
//我们会发现x =>(x,1)是把每一个单值,转换成了一个数组,数组的值都是1,非常精妙
val count1 = words.map(x =>(x,1)).collect()
count1: Array[(String, Int)] = Array((#,1), (Apache,1), (Spark,1), ("",1), (Spark,1), (is,1), (a,1), (fast,1), (and,1), (general,1), (cluster,1), (computing,1), (system,1), (for,1), (Big,1), (Data.,1), (It,1), (provides,1), (high-level,1), (APIs,1), (in,1), (Scala,,1), (Java,,1), (Python,,1), (and,1), (R,,1), (and,1), (an,1), (optimized,1), (engine,1), (that,1), (supports,1), (general,1), (computation,1), (graphs,1), (for,1), (data,1), (analysis.,1), (It,1), (also,1), (supports,1), (a,1), (rich,1), (set,1), (of,1), (higher-level,1), (tools,1), (including,1), (Spark,1), (SQL,1), (for,1), (SQL,1), (and,1), (DataFrames,,1), (MLlib,1), (for,1), (machine,1), (learning,,1), (GraphX,1), (for,1), (graph,1), (processing,,1), (and,1), (Spark,1), (Streaming,1), (for,1), (stream,1), (processing.,1)...
//reduceByKey的作用是把上一步做的数组按照key来合并累加
val count2 = words.map(x =>(x,1)).reduceByKey((x,y)=>x+y).collect
res1: Array[(String, Int)] = Array((package,1), (this,1), (Version"](http://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version),1), (Because,1), (Python,2), (page](http://spark.apache.org/documentation.html).,1), (cluster.,1), (its,1), ([run,1), (general,3), (have,1), (pre-built,1), (YARN,,1), ([http://spark.apache.org/developer-tools.html](the,1), (changed,1), (locally,2), (sc.parallelize(1,1), (only,1), (locally.,1), (several,1), (This,2), (basic,1), (Configuration,1), (learning,,1), (documentation,3), (first,1), (graph,1), (Hive,2), (info,1), (["Specifying,1), ("yarn",1), ([params]`.,1), ([project,1), (prefer,1), (SparkPi,2), (<http://spark.apache.org/>,1), (engine,1), (version,1), (file,1), (documentation,,1), (MASTER,1), (example,3), (["Parallel,1), (are...
//如果是统计单词数:
scala> val count1 = words.map(x =>(x,1))
count1: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[55] at map at <console>:28
scala> count1.count
res3: Long = 568
Spark基础脚本入门实践3:Pair RDD开发的更多相关文章
- Spark基础脚本入门实践2:基础开发
1.最基本的Map用法 val data = Array(1, 2, 3, 4, 5)val distData = sc.parallelize(data)val result = distData. ...
- Spark基础脚本入门实践1
1.创建数据框架 Creating DataFrames val df = spark.read.json("file:///usr/local/spark/examples/src/mai ...
- 【原创 Hadoop&Spark 动手实践 5】Spark 基础入门,集群搭建以及Spark Shell
Spark 基础入门,集群搭建以及Spark Shell 主要借助Spark基础的PPT,再加上实际的动手操作来加强概念的理解和实践. Spark 安装部署 理论已经了解的差不多了,接下来是实际动手实 ...
- Spark基础入门(01)—RDD
1,基本概念 RDD(Resilient Distributed Dataset) :弹性分布式数据集 它是Spark中最基本的数据抽象,是编写Spark程序的基础.简单的来讲,一个Spark程序可以 ...
- spark Pair RDD 基础操作
下面是Pair RDD的API讲解 转化操作 reduceByKey:合并具有相同键的值: groupByKey:对具有相同键的值进行分组: keys:返回一个仅包含键值的RDD: values:返回 ...
- spark中的pair rdd,看这一篇就够了
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是spark专题的第四篇文章,我们一起来看下Pair RDD. 定义 在之前的文章当中,我们已经熟悉了RDD的相关概念,也了解了RDD基 ...
- Spark 基础及RDD基本操作
什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据 ...
- 0.Python 爬虫之Scrapy入门实践指南(Scrapy基础知识)
目录 0.0.Scrapy基础 0.1.Scrapy 框架图 0.2.Scrapy主要包括了以下组件: 0.3.Scrapy简单示例如下: 0.4.Scrapy运行流程如下: 0.5.还有什么? 0. ...
- Spark学习之键值对(pair RDD)操作(3)
Spark学习之键值对(pair RDD)操作(3) 1. 我们通常从一个RDD中提取某些字段(如代表事件时间.用户ID或者其他标识符的字段),并使用这些字段为pair RDD操作中的键. 2. 创建 ...
随机推荐
- Mysql添加新用户遇到的一些小问题
登陆命令:mysql -u root -p 添加本地用户:create user 'sheet'@'localhost' identified by '123456' ; 添加允许外网IP访问的用户 ...
- 解决xcode10打包报错:That command depends on command in Target ‘xxx’:scrpit phase"[CP] Copy Pods Resources"
问题:使用xcode10打包报错,提示 error:Multiple commands produce ‘xxxx/xxx.app’ 1)Target ‘xx’ has create director ...
- 十一 hashlib模块
# 1.什么叫hash:hash是一种算法(3.x里代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法),该算法接受传入的 ...
- oracle 新增并返回新增的主键
oracle 的insert into 语句需要返回新增的主键的时候,可以使用一下insert 语法: insert into ims.t_bank_inquire_results (t_date,l ...
- 187. Repeated DNA Sequences重复的DNA子串序列
[抄题]: All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: &qu ...
- SpringMVC中的Interceptor拦截器及与Filter区别
SpringMVC 中的Interceptor 拦截器也是相当重要和相当有用的,它的主要作用是拦截用户的请求并进行相应的处理.比如通过它来进行权限验证,或者是来判断用户是否登陆,或者是像12306 那 ...
- AJAX心得
持续补充... AJAX的核心是异步对象XMLHttpRequest对象,一个具有程序接口的JavaScript对象,能够使用超文本传输协议(HTTP)链接一个服务器. 这是一段标准的AJAX执行代码 ...
- git基本
基本的git操作 git config --global user.name "你的名字或昵称" git config --global user.email "你的邮箱 ...
- windows 性能监视器常用计数器
转载地址:https://www.jianshu.com/p/f4406c29542a?utm_campaign=maleskine&utm_content=note&utm_medi ...
- 去掉手机端延迟300ms
手机端300ms延迟是由于在手机上可以双击可以放大缩小造成的,当初ios苹果的工程师们做了一些约定,应对 iPhone 这种小屏幕浏览桌面端站点的问题.这就是手机端300ms延迟的由来. 解决:我是用 ...