Spark start-all>>

"""Master启动流程"""

Master类
class Master(
host: String,
port: Int,
webUiPort: Int,
val securityMgr: SecurityManager,
val conf: SparkConf) extends Actor with ActorLogReceive with Logging with LeaderElectable Master端
def main(){
val (actorSystem, _, _, _) = startSystemAndActor(args.host, args.port, args.webUiPort, conf)
actorSystem.awaitTermination()
} Master端
def startSystemAndActor(System, Int, Int, Option[Int]) = {
//调用AkkaUtils创建ActorSystem
val (actorSystem, boundPort) = AkkaUtils.createActorSystem(systemName, host, port, conf = conf,
securityManager = securityMgr)
//创建属于Master的actor, 在创建actor的同时, 会使用classOf[Master]初始化Master
val actor = actorSystem.actorOf(Props(classOf[Master], host, boundPort, webUiPort, securityMgr, conf), actorName)
} Master端
"""初始化Master时由于Master继承了 trait Actor 重写了preStart方法,
Actor的初始化会启动preStart方法 因此找到Master的 override def preStart()
preStart属于生命周期方法, 在构造器之后, receiver之前"""
override def preStart() {
// 启动一个定时器, 定时检查超时的Worker, WORKER_TIMEOUT:每六十秒检查一次,
// self:先对着自己来一下(检查)试试
context.system.scheduler.schedule(0 millis, WORKER_TIMEOUT millis, self, CheckForWorkerTimeOut)
// 调用 timeOutDeadWorkers() 方法,
override def receiveWithLogging = {
case CheckForWorkerTimeOut => {
timeOutDeadWorkers()
}
} // 用来检查并移除所有超时的workers
def timeOutDeadWorkers(){
// 事实上是移除了一个存有WorkInfo的HashSet[WrokInfo]中的对象
val toRemove = workers.filter(_.lastHeartbeat < currentTime - WORKER_TIMEOUT_MS).toArray
for (worker <- toRemove) {
if (worker.state != WorkerState.DEAD) {
removeWorker(worker)
}
}
} def removeWorker(worker: WorkerInfo){
// 删除内存里的workInfo
idToWorker -= worker.id
addressToWorker -= worker.endpoint.address
}
} """之后执行receive方法(1.3版本), 在后来的1.6版本中叫 def receive: PartialFunction[Any, Unit]"""
Master端
override def receiveWithLogging () {}
会不断的接收actor发送过来的请求 """Worker启动流程""" Worker类
class Worker(
host: String,
port: Int,
webUiPort: Int,
cores: Int,
memory: Int,
masterAkkaUrls: Array[String],
actorSystemName: String,
actorName: String,
workDirPath: String = null,
val conf: SparkConf,
val securityMgr: SecurityManager)
extends Actor def preStart() => {
registerWithMaster()
} // 向Master注册的方法
def registerWithMaster() {
// 向所有的Master注册Worker
tryRegisterAllMasters() // 其中内容
def tryRegisterAllMasters()=>{
// 通过Master的Url获取Master的actor
val actor = context.actorSelection(masterAkkaUrl)
// 向Master发送注册信息
actor ! RegisterWorker(workerId, host, port, cores, memory, webUi.boundPort, publicAddress)
}
} Master端
// 接收Worker发送的注册信息
override def receiveWithLogging = {
case RegisterWorker(id, workerHost, workerPort, cores, memory, workerUiPort, publicAddress) =>{
// 判断是否是StandBy状态, doNothing
idToWorker.contains(id), 已经注册过, doNothing 正常情况下(Active状态, 且没有注册过):{
// 把发送来的 WorkerInfo 添加到 Master的 WorkerInfo中
val worker = new WorkerInfo(id, workerHost, workerPort, cores, memory, sender, workerUiPort, publicAddress)
}
// 如果将Worker Info存入内存成功, 则调用持久化引擎, 将信息存入磁盘中,
// 目的是防止数据丢失. 如果Master宕机, 内存中会丢失数据,
// 切换状态(Standby和Active)后, 需要切换的节点拿不到WorkerInfo, Worker会再次注册, 非常消耗资源, 存在磁盘则可以直接去磁盘拿取数据不需要重新注册
if (registerWorker(worker)) {
persistenceEngine.addWorker(worker)
sender ! RegisteredWorker(masterUrl, masterWebUiUrl)
schedule()
} // 向worker响应注册成功信息
sender ! RegisteredWorker(masterUrl, masterWebUiUrl)
// 开始调度资源, 调度资源不仅仅是集群启动的时候调动资源, 运行Job的时候也会调度资源, 其有两种方式 一种是尽量分散, 一种是尽量集中
schedule()
}
} Worker端
// 接收注册成功的信息, 其实是将 Active Master 的Url和rWebUiUrl传回并更新, 之后向他发送心跳~
def receiveWithLogging() = {
case RegisteredWorker(masterUrl, masterWebUiUrl) =>{
//更新MasterUrl
changeMaster(masterUrl, masterWebUiUrl)
//向Master发送心跳信息, HEARTBEAT_MILLIS =15秒, 每十五秒发送一次心跳信息, 发送逻辑为 SendHeartbeat
context.system.scheduler.schedule(0 millis, HEARTBEAT_MILLIS millis, self, SendHeartbeat)
} //向Master发送心跳信息, 实际上是将自己的WorkerId发送给Master
case SendHeartbeat =>
if (connected) { master ! Heartbeat(workerId) }
} Master端
def receiveWithLogging() = {
case Heartbeat(workerId) => {
//正常情况下, 更新上次心跳时间
workerInfo.lastHeartbeat = System.currentTimeMillis()
//启动完成
}
}

  

Spark-源码-Spark-StartAll Master Worler启动流程的更多相关文章

  1. Flink 源码解析 —— Standalone Session Cluster 启动流程深度分析之 Job Manager 启动

    Job Manager 启动 https://t.zsxq.com/AurR3rN 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Mac ...

  2. Flink 源码解析 —— Standalone session 模式启动流程

    Standalone session 模式启动流程 https://t.zsxq.com/EemAEIi 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0 ...

  3. Flink 源码解析 —— Standalone Session Cluster 启动流程深度分析之 Task Manager 启动

    Task Manager 启动 https://t.zsxq.com/qjEUFau 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Ma ...

  4. Caddy源码阅读(二)启动流程与 Event 事件通知

    Caddy源码阅读(二)启动流程与 Event 事件通知 Preface Caddy 是 Go 语言构建的轻量配置化服务器.https://github.com/caddyserver/caddy C ...

  5. DolphinScheduler 源码剖析之 Master 容错处理流程

    点击上方蓝字关注 Apache DolphinScheduler Apache DolphinScheduler(incubating),简称"DS", 中文名 "海豚调 ...

  6. 头秃了,二十三张图带你从源码了解Spring Boot 的启动流程~

    持续原创输出,点击上方蓝字关注我 目录 前言 源码版本 从哪入手? 源码如何切分? 如何创建SpringApplication? 设置应用类型 设置初始化器(Initializer) 设置监听器(Li ...

  7. Tomcat8源码笔记(九)组件StandardContext启动流程--未完待续

    StandardContext代表的是webapps下项目,一个项目就是一个StandardContext,作为Tomcat组件的一部分,就会实现Lifecycle接口,被Tomcat管理着生命周期, ...

  8. Spark源码分析之Sort-Based Shuffle读写流程

    一 .概述 我们知道Spark Shuffle机制总共有三种: 1.未优化的Hash Shuffle:每一个ShuffleMapTask都会为每一个ReducerTask创建一个单独的文件,总的文件数 ...

  9. Apache DolphinScheduler 源码剖析之 Worker 容错处理流程

    今天给大家带来的分享是 Apache DolphinScheduler 源码剖析之 Worker 容错处理流程 DolphinScheduler源码剖析之Worker容错处理流程 Worker容错流程 ...

随机推荐

  1. matlab练习程序(单源最短路径Bellman-Ford)

    该算法可以用来解决一般(边的权值为负)的单源最短路径问题,而dijkstra只能解决权值非负的情况. 此算法使用松弛技术,对每一个顶点,逐步减少源到该顶点的路径的估计值,直到达到最短的路径. 算法运算 ...

  2. 用java实现一个简单的单用户登陆功能的思路

    引用 所谓“单用户单账户登录”是指:在同一系统中,一个用户名不能在两个地方同时登录. 我们参照 QQ 实现效果:当某账号在 A 处登录后,在未退出的情况下,如果再到 B 处登录,那么,系统会挤下 A ...

  3. 手写vector

    看过JDK源码,现在自己想实现一个vector. 最开始的时候,我大概构想了一下怎么设计,一种是设置一个指针数组来存放对象,这样修改的时候可以不用大量的元素复制,但后来仔细想了想,它需要设置一个额外的 ...

  4. ORACLE_SPOOL

    Question:When you use developer tool in oracle.However,you press Ctrl and click left-mouse in a tabl ...

  5. oracle_great_integration_译文

    website:https://www.oracle.com/corporate/features/great-integrations.html Great Integrations(伟大的整合) ...

  6. Linux--Bind服务搭建

    Bind域名解析服务 服务功能:提供域名解析 构建主从域名服务器 1)环境部署 ip=192.168.1.50(主) ip=192.168.1.51(从) [root@localhost Packag ...

  7. mysql导入csv格式文件

    今天测试导入csv格式文件,虽然简单但是如果不注意还是会出现错误,而且mysql在某些方面做的确实对新手不是很友好,记录一下:创建一个csv格式文件:[mysql@xxx1 ycrdb]$ more ...

  8. 线程概念的外延 Threading Terminology-What Are Threads

    https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/Multithreading/AboutThrea ...

  9. Codeforces 7C 扩展欧几里得

    扩展欧几里得是计算 ax + by = gcd(a,b) 的 x,y的整数解. 现在是ax + by + c = 0; 只要 -c 是 gcd(a,b) 的整数倍时有整数解,整数解是 x = x*(- ...

  10. 2018.10.17 学习如何使用Shiro

    参考学习https://www.javazhiyin.com/19502.html