传送门

启发式合并菜题。

题意:支持与连通块有关的几种操作。

要求支持连边,单点修改,连通块修改,全局修改和单点查值,连通块查最大值和全局最大值。


我们对每个连通块和答案用可删堆维护最大值,然后用启发式合并来解决连边的问题。

关键在于连通块修改,这个可以给每个连通块维护一个标记,然后在合并的时候每个数记得修改值就行了。

代码

#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
	int ans=0,w=1;
	char ch=getchar();
	while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();}
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans*w;
}
const int N=3e5+5;
struct IN_OUT_priority_queue{
	priority_queue<int>a,b;
	inline void push(const int&x){a.push(x);}
	inline void del(const int&x){b.push(x);}
	inline int top(){while(b.size()&&a.top()==b.top())a.pop(),b.pop();return a.top();}
	inline int size(){return a.size()-b.size();}
}ans,S[N];
int n,fa[N],det[N],val[N],all=0;
vector<int>id[N];
inline int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
inline void solve1(){
	int x=find(read()),y=find(read());
	if(x==y)return;
	if(id[x].size()<id[y].size())swap(x,y);
	fa[y]=x,ans.del(S[x].top()+det[x]),ans.del(S[y].top()+det[y]);
	for(ri i=0;i<id[y].size();++i)id[x].push_back(id[y][i]),val[id[y][i]]+=det[y]-det[x],S[x].push(val[id[y][i]]);
	ans.push(S[x].top()+det[x]);
}
inline void solve2(){
	int x=read(),fx=find(x),y=read();
	ans.del(S[fx].top()+det[fx]);
	S[fx].del(val[x]),S[fx].push(val[x]+=y);
	ans.push(S[fx].top()+det[fx]);
}
inline void solve3(){int x=find(read()),v=read();ans.del(S[x].top()+det[x]),det[x]+=v,ans.push(S[x].top()+det[x]);}
inline void solve4(){all+=read();}
inline void solve5(){int x=read();cout<<val[x]+det[find(x)]+all<<'\n';}
inline void solve6(){int x=find(read());cout<<S[x].top()+det[x]+all<<'\n';}
inline void solve7(){cout<<ans.top()+all<<'\n';}
int main(){
	n=read();
	for(ri i=1;i<=n;++i)id[i].push_back(i),fa[i]=i,S[i].push(val[i]=read()),ans.push(val[i]);
	for(ri tt=read(),a,b,op;tt;--tt){
		string s;
		cin>>s;
		if(s=="U")solve1();
		if(s=="A1")solve2();
		if(s=="A2")solve3();
		if(s=="A3")solve4();
		if(s=="F1")solve5();
		if(s=="F2")solve6();
		if(s=="F3")solve7();
	}
	return 0;
}

2019.01.17 bzoj2333: [SCOI2011]棘手的操作(启发式合并)的更多相关文章

  1. 真--可并堆模板--BZOJ2333: [SCOI2011]棘手的操作

    n<=300000个点,开始是独立的,m<=300000个操作: 方法一:单点修改.查询,区间修改.查询?等等等等这里修改是块修改不是连续的啊,那就让他连续呗!具体方法:离线后,每次连接两 ...

  2. BZOJ2333:[SCOI2011]棘手的操作(Splay)

    Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边,连接第x个节点和第y个节点 A1 x v: ...

  3. BZOJ2333 [SCOI2011]棘手的操作 堆 左偏树 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2333 题意概括 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i ...

  4. [bzoj2333] [SCOI2011]棘手的操作 (可并堆)

    //以后为了凑字数还是把题面搬上来吧2333 发布时间果然各种应景... Time Limit: 10 Sec  Memory Limit: 128 MB Description 有N个节点,标号从1 ...

  5. bzoj千题计划217:bzoj2333: [SCOI2011]棘手的操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=2333 读入所有数据,先模拟一遍所有的合并操作 我们不关心联通块长什么样,只关心联通块内有谁 所以可以 ...

  6. BZOJ2333 [SCOI2011]棘手的操作 【离线 + 线段树】

    题目 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边,连接第x个节点和第y个节点 A1 x v: 将第x个节点的权 ...

  7. bzoj2333 [SCOI2011]棘手的操作(洛谷3273)

    题目描述 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作:U x y: 加一条边,连接第x个节点和第y个节点A1 x v: 将第x个节点的权 ...

  8. bzoj2333 [SCOI2011]棘手的操作

    用set维护每个联通块里的最值,multiset维护所有块里的最值,并查集维护连通性,然后随便搞搞就行了,合并时候采用启发式合并.复杂度O(nlognlogn),大概勉强过的程度,反正跑的很慢就是了. ...

  9. (右偏树)Bzoj2333: [SCOI2011]棘手的操作

    题面 戳我 Sol 右偏树滑稽+并查集 再在全局开一个可删除的堆(priority_queue) 注意细节 # include <bits/stdc++.h> # define RG re ...

随机推荐

  1. Android使用VideoView播放本地视频及网络视频Demo

    1.xm文件 <?xml version="1.0" encoding="utf-8"?> <RelativeLayout xmlns:and ...

  2. 贪吃蛇Food Java实现(二)

    1.antition包Food类 package cn.tcc.snake.antition; import java.awt.Graphics;import java.awt.Point;publi ...

  3. mysql数据库导出CSV乱码问题

    一.导出汉字为乱码 1. 鼠标右键点击选中的 csv 文件,在弹出的菜单中选择“编辑”,则系统会用文本方 式(记事本)打开该 csv 文件: 2. 打开 csv 文件后,进行“另存为”操作,在弹出的界 ...

  4. P3796 【模板】AC自动机(加强版)

    P3796 [模板]AC自动机(加强版) https://www.luogu.org/problemnew/show/P3796 题目描述 有NN个由小写字母组成的模式串以及一个文本串TT.每个模式串 ...

  5. FortiGate基本信息

    1.介绍 FortiGate是全新的下一代防火墙,在整个硬件架构和系统上面都有新的设计,在性能和功能上面都有了很大提升,具有性能高.接口丰富.功能齐全.安全路由交换一体化.性价比高等优势. Forti ...

  6. mysql之 安装(Mac)

    1.官网下载安装包:https://dev.mysql.com/downloads/mysql/ 2.设置环境变量:(1)首先mysql的安装位置为:/usr/local/mysql/bin (2)在 ...

  7. JQuery|jstl判断是否为空

    //有如下三种判断 var A=$("#**).val(); if(A==null||A==undefined||A==""){ //处理 } //参考文章1说下面方法效 ...

  8. linux服务器搭建

    centos7 java web项目环境搭配 2018年07月19日 17:20:21 阅读数:25 首先进行系统安装,此处不进行详细介绍,自行百度安装 一.配置ip地址信息 1.进入/etc/sys ...

  9. SQL update语句 更新和查询同一张表 冲突

    #update 和 select在同一张表的时候会显示冲突  报错信息: [Err] 1093 - You can't specify target table 'tb_a' for update i ...

  10. 29-jsp中用js进行时间格式转化

    CST可以为如下4个不同的时区的缩写: 美国中部时间:Central Standard Time (USA) UT-6:00 澳大利亚中部时间:Central Standard Time (Austr ...