bzoj1488[HNOI2009]图的同构
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1488
1488: [HNOI2009]图的同构
Time Limit: 10 Sec Memory Limit: 64 MB
Submit: 591 Solved: 388
[Submit][Status][Discuss]
Description
求两两互不同构的含n个点的简单图有多少种。
简单图是关联一对顶点的无向边不多于一条的不含自环的图。
Input
输入一行一个整数N,表示图的顶点数,0<=N<=60
Output
输出一行一个整数表示含N个点的图在同构意义下互不同构的图的数目,答案对997取模。
Sample Input
1
输入2
2
输入3
3
Sample Output
1
输出2
2
输出3
4
HINT
题目在这里 http://hi.baidu.com/fqq11679/blog/item/c277b9f8ff205e50252df2e9.html
Source
百度hi是什么。。
我怎么从来都不知道。。
这真是一道无聊而又无聊的题。。
看到同构两个字就想到了置换群和polya定理。。
但是。。
但是。。
但是。。
这道题要算的是边上的置换。。
感觉不可做。。
然后看了一发题解:http://blog.csdn.net/wzq_qwq/article/details/48035455
就会了
题解说的很详细了,就是把几个循环上的点拎出来再分类讨论一下,最后用polya定理算一下总答案就行了。
记得用逆元算啊。。
代码。。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 1010
#define mod 997
using namespace std;
int i,j,k,n,m,x,y,t,cnt,ans,fac[N],num[N],val[N];
int gcd(int x,int y){return y==?x:gcd(y,x%y);}
int quickmi(int x,int y){
if (y==)return x;
t=quickmi(x,y>>);t=(t*t)%mod;
return (y&)?t*x%mod:t;
}
void dfs(int now,int x){
if(x==){
int anow=,la=;
for(int i=;i<=cnt;i++){
anow+=num[i]*(num[i]-)/*val[i]+val[i]/*num[i];
for(int j=i+;j<=cnt;j++)anow+=num[i]*num[j]*gcd(val[i],val[j]);
}
for(int i=;i<=cnt;i++){la=(la*quickmi(val[i],num[i])%mod*fac[num[i]])%mod; }
la=quickmi(la,mod-)*fac[n]%mod;
ans=(ans+quickmi(,anow)*la%mod)%mod;
}
if(now>x)return;
dfs(now+,x);
for(int i=;i*now<=x;i++){val[++cnt]=now,num[cnt]=i;dfs(now+,x-i*now);cnt--;}
}
int main(){
scanf("%d",&n);
fac[]=;for(i=;i<=mod;i++)fac[i]=fac[i-]*i%mod;
dfs(,n);
ans=ans*quickmi(fac[n],mod-)%mod;
printf("%d\n",ans);
return ;
}
都快noip了还在做这种跟noip无关的题。。
bzoj1488[HNOI2009]图的同构的更多相关文章
- bzoj1488 [HNOI2009]图的同构 Burnside 引理
题目传送门 bzoj1488 - [HNOI2009]图的同构 bzoj1815 - [Shoi2006]color 有色图(双倍经验) 题解 暴力 由于在做题之前已经被告知是 Burnside 引理 ...
- [bzoj1488][HNOI2009]图的同构——Polya定理
题目大意 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和边集能完全与b ...
- 【BZOJ1488】[HNOI2009]图的同构(Burside引理,Polya定理)
[BZOJ1488][HNOI2009]图的同构(Burside引理,Polya定理) 题面 BZOJ 洛谷 题解 求本质不同的方案数,很明显就是群论这套理论了. 置换一共有\(n!\)个,考虑如何对 ...
- 【BZOJ1488】[HNOI2009]图的同构计数
题目链接 题意 求 n 个点的同构意义下不同的图的数量.\((n\leq 60)\) Sol \(Polya\) 定理的练手题. 我们这里先把边的存在与否变成对边进行黑白染色,白色代表不存在,这样就变 ...
- [BZOJ1815&BZOJ1488]有色图/图的同构(Polya定理)
由于有很多本质相同的重复置换,我们先枚举各种长度的点循环分别有多少个,这个暴搜的复杂度不大,n=53时也只有3e5左右.对于每种搜索方案可以轻易求出它所代表的置换具体有多少个. 但我们搜索的是点置换组 ...
- BZOJ 1488: [HNOI2009]图的同构 polay
题意:两个图AB同构:把A的顶点重新编号后与B一模一样.求n个顶点的图一共有多少个?(同构的算一种) 思路:边有n*(n-1)/2,这些边可以有可以没有,所以等同于边的颜色有两种.然后将n划分成循环节 ...
- BZOJ 1488: [HNOI2009]图的同构 [Polya]
完全图中选出不同构的简单图有多少个 上题简化版,只有两种颜色....直接copy就行了 太诡异了,刚才电脑上多了一个不动的鼠标指针,然后打开显卡管理界面就没了 #include<iostream ...
- [HNOI2009]图的同构
Description 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和 ...
- bzoj 1488: [HNOI2009]图的同构
Description 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和 ...
随机推荐
- MyBatis在Oracle中插入数据并返回主键的问题解决
引言: 在MyBatis中,希望在Oracle中插入数据之时,同一时候返回主键值,而非插入的条数... 环境:MyBatis 3.2 , Oracle. Spring 3.2 SQL Snipp ...
- 使用参数化查询防止SQL注入漏洞(转)
SQL注入的原理 以往在Web应用程序访问数据库时一般是采取拼接字符串的形式,比如登录的时候就是根据用户名和密码去查询: string sql * FROM [User] WHERE UserName ...
- 定义C#鼠标指针的形状 Cursor
原文:定义C#鼠标指针的形状 Cursor 定义C#指针形状的两种方法. 1.控件属性定义法: 在Windows应用程序中,通过设置控件的Cursor属性可以定义鼠标的显示形状.控件(如Button控 ...
- JavaScript中call,apply,bind方法的区别
call,apply,bind方法一般用来指定this的环境. var a = { user:"hahaha", fn:function(){ console.log(this.u ...
- [LOJ#6039].「雅礼集训 2017 Day5」珠宝[决策单调性]
题意 题目链接 分析 注意到本题的 \(C\) 很小,考虑定义一个和 \(C\) 有关的状态. 记 \(f(x,j)\) 表示考虑到了价格为 \(x\) 的物品,一共花费了 \(j\) 元的最大收益. ...
- 一个可以代替冗长switch-case的消息分发小框架
在项目中,我需要维护一个应用层的字节流协议.这个协议的每条报文都是一个字节数组,数组的头两个字节表示消息的传送方向,第三.四个字节表示消息ID,也就是消息种类,再往后是消息内容.时间戳.校验码等……整 ...
- STM8S——8位基本定时器(TIM4)
简介:该定时器由一个带可编程预分频器的8位自动重载的向上计数器所组成,它可以用来作为时基发生器,具有溢出中断功能. 主要功能: (1)8位向上计数的自动重载计数器: (2)3位可编程的预分配器(可在运 ...
- cocos2dx内存优化
纹理消耗了大量内存 在大部分情况下,是纹理(textures)消耗了游戏程序大量的内存.因此,纹理是我们首要考虑优化的对象 纹理加载 cocos2d里面纹理加载分为两个阶段:从图片文件中创建一个Ima ...
- Bitcoin区块验证
目录 区块的生成 区块的验证链接 验证过程 Merkle Tree结构 区块的生成 矿工在挖矿前要组建区块 将coinbase交易打包进区块 将交易池中高优先级的交易打包进区块 优先级 = 交易的额度 ...
- BugPhobia准备篇章:Scrum Meeting工作分析篇
特别说明:此博客不计入正式开发过程的Scrum Meeting篇章,只是工作的基础分析 前端 王鹿鸣.钱林琛撰写初稿 能否前端完成一个页面后就能在本地跑起来进行测试? 能否在前端和后端完成对接后单页面 ...