关于SG函数
Sprague-Grundy定理(SG定理):
游戏和的SG函数等于各个游戏SG函数的Nim和。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。对博弈不是很清楚的请参照http://www.cnblogs.com/ECJTUACM-873284962/p/6398385.html进行进一步理解。
SG函数:
首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。
【实例】取石子问题
有1堆n个的石子,每次只能取{ 1, 3, 4 }个石子,先取完石子者胜利,那么各个数的SG值为多少?
SG[0]=0,f[]={1,3,4},
x=1 时,可以取走1 - f{1}个石子,剩余{0}个,所以 SG[1] = mex{ SG[0] }= mex{0} = 1;
x=2 时,可以取走2 - f{1}个石子,剩余{1}个,所以 SG[2] = mex{ SG[1] }= mex{1} = 0;
x=3 时,可以取走3 - f{1,3}个石子,剩余{2,0}个,所以 SG[3] = mex{SG[2],SG[0]} = mex{0,0} =1;
x=4 时,可以取走4- f{1,3,4}个石子,剩余{3,1,0}个,所以 SG[4] = mex{SG[3],SG[1],SG[0]} = mex{1,1,0} = 2;
x=5 时,可以取走5 - f{1,3,4}个石子,剩余{4,2,1}个,所以SG[5] = mex{SG[4],SG[2],SG[1]} =mex{2,0,1} = 3;
以此类推.....
x 0 1 2 3 4 5 6 7 8....
SG[x] 0 1 0 1 2 3 2 0 1....
由上述实例我们就可以得到SG函数值求解步骤,那么计算1~n的SG函数值步骤如下:
1、使用 数组f 将 可改变当前状态 的方式记录下来。
2、然后我们使用 另一个数组 将当前状态x 的后继状态标记。
3、最后模拟mex运算,也就是我们在标记值中 搜索 未被标记值 的最小值,将其赋值给SG(x)。
4、我们不断的重复 2 - 3 的步骤,就完成了 计算1~n 的函数值。
代码实现:(相关例题HDU1536或者POJ2960两道例题一样)
int f[N + 1]; //游戏中石子的不同取法
int sg[1005];
bool mex[1005];//注意这里是bool类型 用int可能会超时
void get_sg(int n)
{
memset(sg, 0, sizeof(sg));
for(int i = 1; i <= 1000; i++) //代表不同情况下总石子的个数,即是sg[x]中的x
{
memset(mex, 0, sizeof(mex));//每次都要重置一下mex,booL型的数组占用字节少,所以Int型可能会超时
for(int j = 1; f[j] <= i && j <= N; j++)
{
mex[i - f[j]] = 1;
}
for(int j = 1;; j++)
{
if(!mex[j])
{
sg[i] = j;
break;
}
}
}
return ;
}
二:拓扑图求解SG函数(DFS)(相关例题:HDU1524)
vector<int>edge[1005];
int sg[1005];
int dfs_sg(int x)
{
if(sg[x] == -1)
return sg[x];
bool vis[1005];//bool型占用字节少
memset(vis, 0, sizeof(vis));
for(int i = 0; i < (int)edge[x].size(); i++)
{
vis[dfs_sg(edge[x][i])] = 1;
}
for(int i = 0;; i++)
{
if(!vis[i])
{
sg[x] = i;
break;
}
}
return sg[x];
}
关于SG函数的更多相关文章
- HDU 5795 A Simple Nim 打表求SG函数的规律
A Simple Nim Problem Description Two players take turns picking candies from n heaps,the player wh ...
- 【转】博弈—SG函数
转自:http://chensmiles.blog.163.com/blog/static/12146399120104644141326/ http://blog.csdn.net/xiaofeng ...
- HDU 1848 Fibonacci again and again【SG函数】
对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...
- POJ2425 A Chess Game[博弈论 SG函数]
A Chess Game Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 3917 Accepted: 1596 Desc ...
- bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 973 Solved: 599[Submit][Status ...
- BZOJ1188 [HNOI2007]分裂游戏(SG函数)
传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...
- sg函数与博弈论2
参考链接: http://blog.sina.com.cn/s/blog_51cea4040100h3l9.html 这篇主要就是讲anti-sg.multi-sg和every-sg的. 例1 poj ...
- sg函数与博弈论
这个标题是不是看起来很厉害呢... 我们首先来看一个最简单的游戏.比如我现在有一堆石子,有p个,每次可以取走若干个(不能不取),不能取的人就输了. 现在假设有两个人要玩这个游戏,一个人先手,一个人后手 ...
- hdu1536&&hdu3023 SG函数模板及其运用
S-Nim Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status ...
- HDU1848 Fibonacci again and again SG函数
Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Jav ...
随机推荐
- 模块化es6规范
阮一峰Module 的语法 1.概述 历史上,JavaScript 一直没有模块(module)体系,无法将一个大程序拆分成互相依赖的小文件,再用简单的方法拼装起来. 在 ES6 之前,社区制定了一些 ...
- 读书笔记 - js高级程序设计 - 第十章 DOM
文档元素 是文档的最外层元素,在Html页面中,文档元素始终都是<html>元素 在xml中,任何元素都可以是文档元素 Node类型 Node.ELEMENT_NODE 元素 Node ...
- AP架构基本过程
①.有线网络搭建(vlan,dhcp,路由等.) ②.ap零配置启动,通过dhcp获取IP地址及网关ip,同时获取ac ip地址. ③.AP主动建立到达ac的capwap隧道. ④.ap与ac建议隧道 ...
- MySQL日志--二进制日志
(一)什么是二进制日志 二进制日志(binlog)记录了数据库中所有的DDL和DML操作,但是不包括select语句,语句以"事件"的形式保存,记录了数据库的更改变化,在主从复制( ...
- CSS绘制小三角
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- mysql 如何删除数据库中所有的表
SELECT concat('DROP TABLE IF EXISTS ', table_name, ';')FROM information_schema.tablesWHERE table_sch ...
- Spring AOP复习
最近在翻<Spring In Action>Spring 实战这本书,重新了解了一下AOP的概念和思想并写了一个小Demo示例,记录在这里: 环境:intelliJ IDEA 2018.M ...
- 新iPhone要推出双卡双待这事是真的吗?
自2007年发布以来,iPhone似乎一直都是"异类"--以自己独特的方式走着一条引领智能手机前进的路!如,在当年遍地按键键盘的年代,iPhone以触摸屏的奇葩姿态引领了新潮流:刚 ...
- Firefly-RK3399 上编译安装 OpenCV 3
原文转自:http://dev.t-firefly.com/thread-12143-1-1.html OS:官方固件 Xubuntu 16.04 1) Install 1.1) Required P ...
- h5-任意元素居中
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...