关于SG函数
Sprague-Grundy定理(SG定理):
游戏和的SG函数等于各个游戏SG函数的Nim和。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。对博弈不是很清楚的请参照http://www.cnblogs.com/ECJTUACM-873284962/p/6398385.html进行进一步理解。
SG函数:
首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。
【实例】取石子问题
有1堆n个的石子,每次只能取{ 1, 3, 4 }个石子,先取完石子者胜利,那么各个数的SG值为多少?
SG[0]=0,f[]={1,3,4},
x=1 时,可以取走1 - f{1}个石子,剩余{0}个,所以 SG[1] = mex{ SG[0] }= mex{0} = 1;
x=2 时,可以取走2 - f{1}个石子,剩余{1}个,所以 SG[2] = mex{ SG[1] }= mex{1} = 0;
x=3 时,可以取走3 - f{1,3}个石子,剩余{2,0}个,所以 SG[3] = mex{SG[2],SG[0]} = mex{0,0} =1;
x=4 时,可以取走4- f{1,3,4}个石子,剩余{3,1,0}个,所以 SG[4] = mex{SG[3],SG[1],SG[0]} = mex{1,1,0} = 2;
x=5 时,可以取走5 - f{1,3,4}个石子,剩余{4,2,1}个,所以SG[5] = mex{SG[4],SG[2],SG[1]} =mex{2,0,1} = 3;
以此类推.....
x 0 1 2 3 4 5 6 7 8....
SG[x] 0 1 0 1 2 3 2 0 1....
由上述实例我们就可以得到SG函数值求解步骤,那么计算1~n的SG函数值步骤如下:
1、使用 数组f 将 可改变当前状态 的方式记录下来。
2、然后我们使用 另一个数组 将当前状态x 的后继状态标记。
3、最后模拟mex运算,也就是我们在标记值中 搜索 未被标记值 的最小值,将其赋值给SG(x)。
4、我们不断的重复 2 - 3 的步骤,就完成了 计算1~n 的函数值。
代码实现:(相关例题HDU1536或者POJ2960两道例题一样)
int f[N + 1]; //游戏中石子的不同取法
int sg[1005];
bool mex[1005];//注意这里是bool类型 用int可能会超时
void get_sg(int n)
{
memset(sg, 0, sizeof(sg));
for(int i = 1; i <= 1000; i++) //代表不同情况下总石子的个数,即是sg[x]中的x
{
memset(mex, 0, sizeof(mex));//每次都要重置一下mex,booL型的数组占用字节少,所以Int型可能会超时
for(int j = 1; f[j] <= i && j <= N; j++)
{
mex[i - f[j]] = 1;
}
for(int j = 1;; j++)
{
if(!mex[j])
{
sg[i] = j;
break;
}
}
}
return ;
}
二:拓扑图求解SG函数(DFS)(相关例题:HDU1524)
vector<int>edge[1005];
int sg[1005];
int dfs_sg(int x)
{
if(sg[x] == -1)
return sg[x];
bool vis[1005];//bool型占用字节少
memset(vis, 0, sizeof(vis));
for(int i = 0; i < (int)edge[x].size(); i++)
{
vis[dfs_sg(edge[x][i])] = 1;
}
for(int i = 0;; i++)
{
if(!vis[i])
{
sg[x] = i;
break;
}
}
return sg[x];
}
关于SG函数的更多相关文章
- HDU 5795 A Simple Nim 打表求SG函数的规律
A Simple Nim Problem Description Two players take turns picking candies from n heaps,the player wh ...
- 【转】博弈—SG函数
转自:http://chensmiles.blog.163.com/blog/static/12146399120104644141326/ http://blog.csdn.net/xiaofeng ...
- HDU 1848 Fibonacci again and again【SG函数】
对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...
- POJ2425 A Chess Game[博弈论 SG函数]
A Chess Game Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 3917 Accepted: 1596 Desc ...
- bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 973 Solved: 599[Submit][Status ...
- BZOJ1188 [HNOI2007]分裂游戏(SG函数)
传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...
- sg函数与博弈论2
参考链接: http://blog.sina.com.cn/s/blog_51cea4040100h3l9.html 这篇主要就是讲anti-sg.multi-sg和every-sg的. 例1 poj ...
- sg函数与博弈论
这个标题是不是看起来很厉害呢... 我们首先来看一个最简单的游戏.比如我现在有一堆石子,有p个,每次可以取走若干个(不能不取),不能取的人就输了. 现在假设有两个人要玩这个游戏,一个人先手,一个人后手 ...
- hdu1536&&hdu3023 SG函数模板及其运用
S-Nim Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status ...
- HDU1848 Fibonacci again and again SG函数
Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Jav ...
随机推荐
- CVE-2010-0249(极光)分析报告
2019/9/10 报告doc在文件里面 1. 发现可疑流量 A.分析流量,导出字节流 B.得到网页代码,发现需要执行的代码需要解密(加密的字符串部分太长了,就省略了): C. ...
- c++ opencv 动态内存
1.CvMemStorage定义动态内存存储器 内存存储器是一个用来存储诸如序列.轮廓.图形和子划分等动态增长数据结构的底层结构 2.示例 CvMemStorage *mems = cvCreat ...
- SQL的7种连接查询详细实例讲解
SQL的7种连接查询详细实例讲解 原文链接:https://mp.weixin.qq.com/s/LZ6BoDhorW4cSBhaGy8VUQ 在使用数据库查询语句时,单表的查询有时候不能满足项目的业 ...
- android——TextView默认文字开发时显示运行时隐藏
根布局添加属性: xmlns:tools="http://schemas.android.com/tools" textview添加属性: tools:text="默认文 ...
- Spring耗时拦截器(url,restful)
import java.io.IOException; import java.util.Date; import javax.servlet.Filter; import javax.servlet ...
- Windows系统JDK环境变量配置
一.环境准备 Windows10 jdk1.8.0_144 二.下载并安装JDK 下载 密码: r5ym 三.环境变量配置 首先,打开控制面板>系统和安全>系统,点击高级系统设置进入系统属 ...
- 寒假day21
标签模块报了一些错误,暂时没有找出原因.刷了一些面试题
- vue移动端点击一个元素缩小,松手的时候元素恢复正常
active伪类解决 HTML代码 <div class='box'> </div> CSS代码 .box { width: 100px; height: 100px; bac ...
- NumPy - 数组(定义,拼接)
NumPy 教程(数组) set_printoptions(threshold='nan') NumPy的数组中比较重要ndarray对象属性有: ndarray.ndim:数组的维数(即数组轴的个数 ...
- jQuery实现轮播图--入门
jQuery是一个前台的框架. 主要函数: setInterval 语法:setInterval(code,millisec[,"lang"]) cdoe:需要执行的代码或者要调用 ...