Spark Streaming 是核心Spark API的扩展,可实现实时数据流的可伸缩,高吞吐量,容错流处理。可以从许多数据源(例如Kafka,Flume,Kinesis或TCP sockets)中提取数据,并且可以使用复杂的算法处理数据,这些算法用高级函数表示,如map、reduce、join和window。最后,可以将处理后的数据推送到文件系统,数据库和实时仪表板。实际上,可以在数据流上应用Spark的机器学习和图形处理算法。

在内部,它的工作方式如下。 Spark Streaming接收实时输入数据流,并将数据分成批次,然后由Spark引擎进行处理,以生成批次的最终结果流。

Spark Streaming提供了一种高级抽象,称为离散流或DStream,它表示连续的数据流。DStreams可以从Kafka、Flume和Kinesis等源的输入数据流创建,也可以通过在其他DStreams上应用高级操作创建。在内部,DStream表示为RDDs序列。

1. 了解Spark

Apache Spark 是一个用于大规模数据处理的统一分析引擎

    

特性:

将工作负载运行速度提高100倍

Apache Spark使用最新的DAG调度程序,查询优化器和物理执行引擎,为批处理数据和流数据提供了高性能。

易用

可以使用Java,Scala,Python,R和SQL快速编写应用程序。

通用

结合SQL、流和复杂的分析

Spark为包括SQL和DataFrames,用于机器学习的MLlib,GraphX和Spark Streaming在内的一堆库提供支持。您可以在同一应用程序中无缝组合这些库。

到处运行

Spark可在Hadoop,Apache Mesos,Kubernetes,独立或云中运行。它可以访问各种数据源。

可以在EC2,Hadoop YARN,Mesos或Kubernetes上使用其独立集群模式运行Spark。访问HDFS,Alluxio,Apache Cassandra,Apache HBase,Apache Hive和数百种其他数据源中的数据。

2. 入门案例

统计单词出现的次数,这个例子在Hadoop中用MapReduce也写过。

JavaStreamingContext是java版的StreamingContext。它是Spark Streaming功能的主要入口点。它提供了从输入源创建JavaDStream和JavaPairDStream的方法。可以使用context.sparkContext访问内部的org.apache.spark.api.java.JavaSparkContext。在创建和转换DStream之后,可以分别使用context.start()和context.stop()启动和停止流计算。

 1 public static void main(String[] args) throws InterruptedException {
2 // Create a local StreamingContext with two working thread and batch interval of 1 second
3 SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount");
4 JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds());
5
6 // Create a DStream that will connect to hostname:port, like localhost:9999
7 JavaReceiverInputDStream<String> lines = jssc.socketTextStream("localhost", );
8
9 // Split each line into words
10 JavaDStream<String> words = lines.flatMap(x -> Arrays.asList(x.split(" ")).iterator());
11
12 // Count each word in each batch
13 JavaPairDStream<String, Integer> pairs = words.mapToPair(s -> new Tuple2<>(s, ));
14 JavaPairDStream<String, Integer> wordCounts = pairs.reduceByKey((i1, i2) -> i1 + i2);
15
16 // Print the first ten elements of each RDD generated in this DStream to the console
17 wordCounts.print();
18
19 // Start the computation
20 jssc.start();
21 // Wait for the computation to terminate
22 jssc.awaitTermination();
23 }

3. 基本概念

3.1. Maven依赖

1 <groupId>org.apache.spark</groupId>
2 <artifactId>spark-streaming_2.12</artifactId>
3 <version>2.4.5</version>
4 <scope>provided</scope>
5 </dependency>

为了从其它数据源获取数据,需要添加相应的依赖项spark-streaming-xyz_2.12。例如:

1 <dependency>
2 <groupId>org.apache.spark</groupId>
3 <artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
4 <version>2.4.5</version>
5 </dependency>

3.2. 初始化StreamingContext

为了初始化一个Spark Streaming程序,必须创建一个StreamingContext对象,该对象是所有Spark Streaming功能的主要入口点。

我们可以从SparkConf对象中创建一个JavaStreamingContext对象

1 import org.apache.spark.SparkConf;
2 import org.apache.spark.streaming.Duration;
3 import org.apache.spark.streaming.api.java.JavaStreamingContext;
4
5 SparkConf conf = new SparkConf().setAppName(appName).setMaster(master);
6 JavaStreamingContext ssc = new JavaStreamingContext(conf, new Duration()); 

appName 参数是显示在集群UI上的你的应用的名字

master 参数是一个Spark、 Mesos 或 YARN 集群URL,或者也可以是一个特定的字符串“local[*]”表示以本地模式运行。实际上,当在集群上运行时,肯定不希望对在程序中对master进行硬编码,而希望通过spark-submit启动应用程序并在其中接收它。然而,对于本地测试,你可以传“local[*]”来运行Spark Streaming。

还可以从一个已存在的JavaSparkContext中创建一个JavaStreamingContext对象

1 import org.apache.spark.streaming.api.java.*;
2
3 JavaSparkContext sc = ... //existing JavaSparkContext
4 JavaStreamingContext ssc = new JavaStreamingContext(sc, Durations.seconds());

在定义完context之后,必须做以下事情:

  1. 通过创建input DStreams来定义input sources
  2. 通过对DStreams应用transformation(转换)和output(输出)操作来定义流计算
  3. 用streamingContext.start()来开始接收数据并处理它
  4. 用streamingContext.awaitTermination()等待处理停止(手动停止或由于任何错误)
  5. 用streamingContext.stop()可以手动停止

需要记住的点:

  • 一旦启动上下文,就无法设置新的流计算或将其添加到该流计算中
  • 上下文一旦停止,就无法重新启动
  • 一个JVM中只能同时激活一个StreamingContext
  • StreamingContext中的stop()也会停止SparkContext。但如果要仅停止StreamingContext的话,设置stop(false)
  • 只要在创建下一个StreamingContext之前停止了上一个StreamingContext(不停止SparkContext),就可以将SparkContext重用于创建多个StreamingContext

3.3. DStreams(离散流)

Discretized Stream 或 DStream 是Spark Streaming提供的基本抽象。它表示一个连续的数据流,可以是从源接收的输入数据流,也可以是通过转换输入流生成的已处理数据流。在内部,DStream由一系列连续的RDD表示,这是Spark对不变的分布式数据集的抽象。DStream中的每个RDD都包含来自特定间隔的数据,如下图所示。

在DStream上执行的任何操作都转换为对基础RDD的操作。例如,最简单的将一行句子转换为单词的例子中,flatMap操作应用于行DStream中的每个RDD,以生成单词DStream的RDD。如下图所示:

3.4. Input DStreams 和 Receivers

Input DStream是表示从源接收的输入数据流。在上图中,lines是输入DStream,因为它表示从netcat服务器接收的数据流。每一个输入DStream都关联着一个Receiver对象,该对象从源接收数据并将其存储在Spark的内存中以进行处理。

Spark Streaming提供了两类内置的streaming源:

  • Basic sources :直接在StreamingContext API中可用的源。例如,文件系统和socket连接
  • Advanced sources :像Kafka,Flume,Kinesis等这样的源,可通过额外的程序类获得

如果要在流应用程序中并行接收多个数据流,则可以创建多个输入DStream。这将创建多个Receiver(接收器),这些接收器将同时接收多个数据流。重要的是要记住,必须为Spark Streaming应用程序分配足够的内核(或线程,如果在本地运行),以处理接收到的数据以及运行接收器。

需要记住的点:

  • 在本地运行Spark Streaming程序时,请勿使用“ local”或“ local [1]”作为master URL。这两种方式均意味着仅一个线程将用于本地运行任务。如果使用的是基于接收器的输入DStream(例如套接字,Kafka,Flume等),则将使用单个线程来运行接收器,而不会留下任何线程来处理接收到的数据。 因此,在本地运行时,请始终使用“ local [n]”作为主URL,其中n>要运行的接收器数
  • 为了将逻辑扩展到在集群上运行,分配给Spark Streaming应用程序的内核数必须大于接收器数。 否则,系统将接收数据,但无法处理它。

Basic Sources

为了从文件中读取数据,可以通过StreamingContext.fileStream[KeyClass, ValueClass, InputFormatClass]来创建一个DStream

例如:streamingContext.textFileStream(dataDirectory);

Spark Streaming将监视目录dataDirectory并处理在该目录中创建的所有文件

  • 可以监视一个简单的目录,例如:"hdfs://namenode:8040/logs/2017/*"。在这里,DStream将由目录中与模式匹配的所有文件组成。也就是说:它是目录的模式,而不是目录中的文件。
  • 所有文件必须使用相同的数据格式
  • 根据文件的修改时间而不是创建时间,将其视为时间段的一部分
  • 一旦已经被处理后,在当前窗口中对文件的更改不会导致重新读取该文件。即:更新被忽略。

3.5. Transformations on DStreams

对DStreams做转换,与RDD相似,转换允许修改输入DStream中的数据。DStream支持普通Spark RDD上可用的许多转换。一些常见的方法如下:

map(func) 通过将源DStream的每个元素传递给函数func来处理并返回新的DStream
flatMap(func) 与map类似,但是每个输入项可以映射到0个或多个输出项
filter(func) 过滤
repartition(numPartitions)  通过创建更多或更少的分区来更改此DStream中的并行度
union(otherStream)  将源DStream和另一个DStream中的元素合并在一起,返回一个新的DStream。相当于SQL中的union 
count() 返回元素的个数
reduce(func)  通过使用函数func(接受两个参数并返回一个)来聚合源DStream的每个RDD中的元素,从而返回一个单元素RDD的新DStream。 
countByValue() 

在类型为K的元素的DStream上调用时,返回一个新的(K,Long)形式的DStream,其中每个键的值是其在源DStream的每个RDD中的频率。

reduceByKey(func, [numTasks])  在一个(K,V)形式的DStream上调用时,返回一个新的(K,V)DStream,其中使用给定的reduce函数汇总每个键的值
join(otherStream, [numTasks])  在(K,V)和(K,W)两个DStream上调用时,返回一个新的(K,(V,W))DStream 
cogroup(otherStream, [numTasks])  在(K,V)和(K,W)DStream上调用时,返回一个新的(K,Seq [V],Seq [W])元组的DStream 
transform(func)  通过对源DStream的每个RDD应用RDD-to-RDD函数来返回新的DStream。这可用于在DStream上执行任意RDD操作。
updateStateByKey(func)  返回一个新的“state” DStream 

其实,这次操作跟Java Stream很像

Window Operations(窗口操作)

Spark Streaming还提供了窗口计算,可以在数据的滑动窗口上应用转换。下图说明了此滑动窗口:

如图所示,每当窗口在源DStream上滑动时,就会对落入窗口内的源RDD进行操作,以生成窗口DStream的RDD。

任何窗口函数所必须的两个参数:

  • 窗口的长度
  • 滑到的频率(或者说时间间隔)

举个例子,我们来扩展前面的示例,假设我们想要每10秒在数据的最后30秒生成一次单词次数统计。为此,必须在数据的最后30秒内对(word,1)对的DStream对应用reduceByKey操作。

 1 import org.apache.spark.streaming.Durations;
2 import org.apache.spark.streaming.api.java.JavaDStream;
3 import org.apache.spark.streaming.api.java.JavaPairDStream;
4 import scala.Tuple2;
5
6
7 JavaDStream<String> words = lines.flatMap(x -> Arrays.asList(x.split(" ")).iterator());
8 JavaPairDStream<String, Integer> pairs = words.mapToPair(s -> new Tuple2<>(s, ));
9
10 // Reduce last 30 seconds of data, every 10 seconds
11 JavaPairDStream<String, Integer> windowedWordCounts = pairs.reduceByKeyAndWindow((i1, i2) -> i1 + i2, Durations.seconds(), Durations.seconds());

一些常见的窗口操作如下。所有这些操作均采用上述两个参数:windowLength和slideInterval

window(windowLength, slideInterval) 返回基于源DStream的窗口批处理计算的新DStream
countByWindow(windowLength, slideInterval) 返回流中元素的滑动窗口数
reduceByWindow(func, windowLength, slideInterval) 对窗口内的数据进行聚合操作
reduceByKeyAndWindow(func, windowLength, slideInterval, [numTasks]) 在(K,V)DStream上调用时,返回新的(K,V)DStream,其中使用给定的reduce函数func在滑动窗口中的批处理上汇总每个键的值
reduceByKeyAndWindow(func, invFunc, windowLength, slideInterval, [numTasks])  
countByValueAndWindow(windowLength, slideInterval, [numTasks])  

3.6. Output Operations on DStreams

输出操作允许将DStream的数据输出到外部系统,例如数据库或文件系统。

流式应用程序必须24/7全天候运行,因此必须能够抵抗与应用程序逻辑无关的故障(例如,系统故障,JVM崩溃等)。为此,Spark Streaming需要将足够的信息检查点指向容错存储系统,以便可以从故障中恢复。检查点有两种类型的数据。

  • 元数据检查点-将定义流计算的信息保存到HDFS等容错存储中。这用于从运行流应用程序的驱动程序的节点的故障中恢复。
  • 数据检查点-将生成的RDD保存到可靠的存储中

完整代码:

 1 package com.example.demo;
2
3 import org.apache.spark.SparkConf;
4 import org.apache.spark.streaming.Durations;
5 import org.apache.spark.streaming.api.java.JavaDStream;
6 import org.apache.spark.streaming.api.java.JavaPairDStream;
7 import org.apache.spark.streaming.api.java.JavaStreamingContext;
8 import scala.Tuple2;
9
10 import java.util.Arrays;
11 import java.util.regex.Pattern;
12
13 /**
14 * @author ChengJianSheng
15 */
16 public class JavaWordCount {
17
18 private static final Pattern SPACE = Pattern.compile(" ");
19
20 public static void main(String[] args) {
21 if (args.length < ) {
22 System.err.println("Usage: JavaWordCount <file>");
23 System.exit();
24 }
25
26 SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("JavaWordCount");
27 JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds());
28
29 JavaDStream<String> lines = jssc.textFileStream(args[]);
30 JavaDStream<String> words = lines.flatMap(line -> Arrays.asList(SPACE.split(line)).iterator());
31 JavaPairDStream<String, Integer> ones = words.mapToPair(word -> new Tuple2<>(word, ));
32 JavaPairDStream<String, Integer> counts = ones.reduceByKey((i1, i2) -> i1 + i2);
33 counts.print();
34
35 /*
36 JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(1));
37 JavaDStream<String> textFileStream = jsc.textFileStream("/data");
38 textFileStream.flatMap(line->Arrays.asList(line.split(" ")).iterator())
39 .mapToPair(word->new Tuple2<>(word, 1))
40 .reduceByKey((a,b)->a+b)
41 .print();
42 jsc.start();
43 */
44 }
45 }

4. Docs

https://spark.apache.org/

https://spark.apache.org/docs/latest/streaming-programming-guide.html

Spark Streaming 编程入门指南的更多相关文章

  1. Apache Spark 2.2.0 中文文档 - Spark Streaming 编程指南 | ApacheCN

    Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Inp ...

  2. Apache Spark 2.2.0 中文文档 - Spark Streaming 编程指南

    Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Inp ...

  3. 学习笔记:spark Streaming的入门

    spark Streaming的入门 1.概述 spark streaming 是spark core api的一个扩展,可实现实时数据的可扩展,高吞吐量,容错流处理. 从上图可以看出,数据可以有很多 ...

  4. Spark Streaming编程示例

    近期也有开始研究使用spark streaming来实现流式处理.本文以流式计算word count为例,简单描述如何进行spark streaming编程. 1. 依赖的jar包 参考<分别用 ...

  5. 《转载》编程入门指南 v1.4

    编程入门指南 v1.4 Badger · 8 个月前 作者:@萧井陌, @Badger 自由转载-非商用-非衍生-保持署名 | Creative Commons BY-NC-ND 3.0 CoCode ...

  6. Spark Streaming编程指南

    Overview A Quick Example Basic Concepts Linking Initializing StreamingContext Discretized Streams (D ...

  7. Spark Streaming 调优指南

    SparkStreaming是架构在SparkCore上的一个"应用",SparkStreaming主要由DStreamGraph.Job的生成.数据的接收和导入以及容错四大模块组 ...

  8. Spark Streaming 快速入门

    一.简介 1.便于使用 Spark Streaming将Apache Spark的 语言集成API 引入流处理,使您可以像编写批处理作业一样编写流式作业.它支持Java,Scala和Python. 2 ...

  9. Spark官方3 ---------Spark Streaming编程指南(1.5.0)

    Design Patterns for using foreachRDD dstream.foreachRDD是一个强大的原语,允许将数据发送到外部系统.然而,了解如何正确有效地使用该原语很重要.避免 ...

随机推荐

  1. utuntu sever1804显示中文putty可以输入中文

    默认情况下,putty连接ubuntu server以后,哪怕设置的Utf-8的连接,也是无法显示中文的. 应该是ubuntu服务器端,没有字库的问题. 如果在putty显示和输入中文呢,因为配置信息 ...

  2. 【小程序】---- input获得焦点时placeholder重影BUG

    问题小程序的input组件有个自身的bug,即当输入框获取焦点时placeholder内容会出现重影现象. 解决思路原理:将placeholder内容单独写在另外的标签里,控制其显示隐藏.操作:将代表 ...

  3. can do / will do / should do 情态动词

    can do = be able to do will do = be going to do should do = ought to do 情态动词 都是表示建议 从这里发现 to do (不确定 ...

  4. apply 和 call 方法详解【转载】

    本文转载至:http://blog.csdn.net/business122/article/details/8000676 我在一开始看到javascript的函数apply和call时,非常的模糊 ...

  5. Android NDK JNI 入门笔记-day04-NDK实现Hash算法

    * Android NDK JNI 入门笔记目录 * 开头 前面的学习,我们已经掌握了 NDK 开发的必备知识. 下一步就要多实践,通过创造问题并解决问题,来增加熟练度,提升经验. 日常开发中,经常会 ...

  6. 文件上传transferTo一行代码的bug

    本次的项目环境为 Running with Spring Boot v1.5.10.RELEASE, Spring v4.3.14.RELEASE, 服务器环境为CentOS7.0. transfer ...

  7. foobox更新日志

    2020-1-31, 6.1.5.1a 版(*) 跟进汉化版修正.(*) MusicTag升级到 1.0.4.0.(*) 部分图标改良,其他优化和修正.(+) 丰富网络功能,增加一个搜索源,一个榜单源 ...

  8. Hibernate一对多

    例如:一个用户可以对应多个订单  但一个订单只能对应一个用户 1.创建实体类 2.编写映射文件 <?xml version="1.0"?> <!DOCTYPE h ...

  9. AspNetCore3.1_Secutiry源码解析_6_Authentication_OpenIdConnect

    title: "AspNetCore3.1_Secutiry源码解析_6_Authentication_OpenIdConnect" date: 2020-03-25T21:33: ...

  10. 全国职业技能大赛信息安全管理与评估-MySQL爆破脚本

    DEMO: #coding=utf-8 import MySQLdb class MSSQL: def __init__(self,host,user,pwd): self.host = host s ...