题目链接

题意:给定一个无向图和一个点u,找出若干条边组成一个子图,要求这个子图中u到其他个点的最短距离与在原图中的相等,并且要求子图所有边的权重之和最小,求出最小值并输出子图的边号。

思路:先求一遍最短路,从所有到i点的满足最短路的边中选一条权最小的边。

Java程序

import java.io.PrintStream;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
import java.util.Scanner; public class E545 {
private static class Edge {
int v;
long w;
int index; Edge(int v, long w, int index) {
this.v = v;
this.w = w;
this.index = index;
}
} public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintStream out = System.out; int n = in.nextInt(), m = in.nextInt();
List<Edge>[] graph = new List[n]; for (int i = 0; i < n; i++) {
graph[i] = new ArrayList<E545.Edge>();
} for (int i = 1; i <= m; i++) {
int v1 = in.nextInt() - 1;
int v2 = in.nextInt() - 1;
long w = in.nextLong(); graph[v1].add(new Edge(v2, w, i));
graph[v2].add(new Edge(v1, w, i));
}
int u = in.nextInt() - 1; Edge[] lastEdge = new Edge[n];
final long[] min = new long[n];
for (int i = 0; i < n; i++) {
min[i] = -1;
} min[u] = 0;
Queue<Integer> q = new LinkedList<Integer>(); q.add(u); while (!q.isEmpty()) {
int v = q.poll(); for (Edge edge : graph[v]) {
int v1 = edge.v;
long min1 = min[v] + edge.w; if ((min[v1] == -1) || (min1 < min[v1])
|| (min1 == min[v1] && edge.w < lastEdge[v1].w)) { min[v1] = min1;
lastEdge[v1] = edge;
q.add(v1);
}
}
} long res = 0;
boolean[] f = new boolean[m]; for (int i = 0; i < n; i++) {
if (lastEdge[i] != null) {
res += lastEdge[i].w;
f[lastEdge[i].index - 1] = true;
}
} out.println(res); StringBuilder s = new StringBuilder();
boolean first = true;
for (int i = 0; i < m; i++) {
if (f[i]) {
if (!first) {
s.append(" ");
}
s.append(i + 1);
first = false;
}
}
out.println(s.toString());
in.close();
out.close(); } }

 

Python代码

import heapq as hq

class edge(object):
def __init__(self, to, w, nr):
self.to = to
self.w = w
self.nr = nr n, m = map(int, raw_input().split())
adj = [[] for _ in range(n + 1)]
for i in range(1, m+1):
u, v, c = map(int, raw_input().split())
adj[u].append((v, c, i))
adj[v].append((u, c, i))
root = int(raw_input())
vis = [False] * (n+1)
q = [(0, 0, root, 0)]
ans = []
tot = 0
while q:
d, c, n, e = hq.heappop(q)
if vis[n]:
continue
ans.append(e)
tot += c
vis[n] = True
for v, c, i in adj[n]:
if not vis[v]:
hq.heappush(q, (d+c, c, v, i))
ans = map(str, ans)
print tot
print " ".join(ans[1:])

 

上面的代码都是在codeforces上面抄过来的,自己写不出来。。。。

545E. Paths and Trees的更多相关文章

  1. Codeforces 545E. Paths and Trees 最短路

    E. Paths and Trees time limit per test: 3 seconds memory limit per test: 256 megabytes input: standa ...

  2. CF 545E Paths and Trees

    题目大意:给出n个点,m条无向边,每条边有长度.求一棵树,要求树上的每个点到源点距离最小的前提下,使得树上的边的长度和最小.输出树上边的总长度,以及树上的边的序号(按输入顺序 1...m). 思路 : ...

  3. Codeforces 545E. Paths and Trees[最短路+贪心]

    [题目大意] 题目将从某点出发的所有最短路方案中,选择边权和最小的最短路方案,称为最短生成树. 题目要求一颗最短生成树,输出总边权和与选取边的编号.[题意分析] 比如下面的数据: 5 5 1 2 2 ...

  4. [Codeforces 545E] Paths and Trees

    [题目链接] https://codeforces.com/contest/545/problem/E [算法] 首先求 u 到所有结点的最短路 记录每个节点最短路径上的最后一条边         答 ...

  5. codeforces 545E E. Paths and Trees(单源最短路+总权重最小)

    E. Paths and Trees time limit per test:3 seconds memory limit per test:256 megabytes input:standard ...

  6. Codeforces Round #303 (Div. 2) E. Paths and Trees 最短路+贪心

    题目链接: 题目 E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes inputs ...

  7. Codeforces Round #303 (Div. 2)E. Paths and Trees 最短路

    E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  8. Codeforces Round #303 (Div. 2) E. Paths and Trees Dijkstra堆优化+贪心(!!!)

    E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  9. Codeforces Paths and Trees

    Paths and Trees time limit per test3 seconds memory limit per test256 megabytes Little girl Susie ac ...

随机推荐

  1. generate the next AttestationNumber, 格式是ICD-EPRG-DEV-0000000001,ICD-EPRG-DEV-0000000002

    private static int GetNextAttestationNumber(string maxAttestationNumber) { //generate the next Attes ...

  2. scrapy 错误

    1. 安装win32时候 Unable to find vcvarsall.bat 解决方法: 1.如果你没有安装vc,去微软下个 VS2008 的免费版就能解决此问题. 2.如果你安装的是VS201 ...

  3. P1697: [Usaco2007 Feb]Cow Sorting牛排序

    这是一道置换群的裸题=-=,先拿来试试手对着打,以后应该会更加熟练吧! ; var n,i,j,maxx,minx,now,len,cursum,tmin,sum:longint; p:array[. ...

  4. 使用C语言在Win控制台中输出带颜色的文字

    学了这么久的C语言,一直停留在编写“控制台”程序的水平.黑色窗口,白色的文字,看多了着实让人感到枯燥无味.但是作为业余爱好者,我既没有那么多时间和精力去学习如何编写窗口程序,也没有那个必要一定用C去调 ...

  5. Netsharp快速入门(之16) Netsharp基础功能(权限管理)

    第5章     Netsharp基础功能 5.1     权限配置 5.1.1  功能权限 1.配置权限功能点,打开平台工具-基础业务-操作管理 2.选择资源节点为销售订单,点添加常用操作,添加完成后 ...

  6. 增强学习————K-摇臂赌博机

    探索与利用增强学习任务的最终奖赏是在多步动作之后才能观察到,于是我们先考虑最简单的情形:最大化单步奖赏,即仅考虑一步操作.不过,就算这样,强化学习仍与监督学习有显著不同,因为机器要通过尝试来发现各个动 ...

  7. 自定义异常时如何定义checked异常和unchecked异常

    When defining your own exception type, study the existing exception classes in the Java API and try ...

  8. RobotFramework-调用.py文件

    RobotFramework-调用.py文件,直接运行: 注意:文件路径的\全部换成好了/

  9. Java 死锁诊断 -- 线程转储

    java线程转储 java的线程转储可以被定义为JVM中在某一个给定的时刻运行的所有线程的快照.一个线程转储可能包含一个单独的线程或者多个线程.在多线程环境中,比如J2EE应用服务器,将会有许多线程和 ...

  10. hibernate--联合主键(了解+,掌握-)

    如果一个表有多个主键(= =一般比较少) 8.4. 组件作为联合标识符(Components as composite identifiers) 先定义一个类OrderLineId (实现接口,imp ...