数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。

•分类和聚类
•分类(Classification)就是按照某种标准给对象贴标签,再根据标签来区分归类,类别数不变
•聚类(clustering)是指根据“物以类聚”的原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程。
 
C4.5算法应该解决的问题有哪些呢?
一、如何选择测试属性构造决策树?
二、对于连续变量决策树中的测试是怎样的呢?
三、如何选择处理连续变量(阈值)?
四、如何终止树的增长?
五、如何确定叶子节点的类?
决策树:
 
如何选择测试属性构造决策树?
用信息增益率来选择属性
•这个指标实际上就等于增益/熵,之所以采用这个指标是为了克服采用增益作为衡量标准的缺点,采用增益作为衡量标准会导致分类树倾向于优先选择那些具有比较多的分支的测试,也就是选择取值较多的属性,这种倾向需要被抑制
                                                                                            
•其中,S1到Sc是c个不同值的属性A分割S而形成的c个样本子集。如按照属性A把S集(含30个用例)分成了10个用例和20个用例两个集合则SplitInfo(S,A)=-1/3*log(1/3)-2/3*log(2/3)
                                                                                            
•很明显,我们看到这个例子中对于连续变量,所有连续变量的测试分支都是2条,因此在C4.5算法中,连续变量的分支总是两条,分支其测试分支分别对应着{<=θ,>θ},θ对应着分支阈值,但是这个θ怎么确定呢?
 
•很简单,把需要处理的样本(对应根节点)或样本子集(对应子树)按照连续变量的大小从小到大进行排序,假设该属性对应的不同的属性值一共有N个,那么总共有N-1个可能的候选分割阈值点,每个候选的分割阈值点的值为上述排序后的属性值链表中两两前后连续元素的中点,那么我们的任务就是从这个N-1个候选分割阈值点中选出一个,使得前面提到的信息论标准最大。举个例子,对于Golf数据集,我们来处理温度属性,来选择合适的阈值。首先按照温度大小对对应样本进行排序如下:
                                
•那么可以看到有13个可能的候选阈值点,比如middle[64,65], middle[65,68]….,middle[83,85]。那么最优的阈值该选多少呢?应该是middle[71,72],如上图中红线所示。为什么呢?如下计算:
                                
•通过上述计算方式,0.939是最大的,因此测试的增益是最小的。(测试的增益和测试后的熵是成反比的,这个从后面的公式可以很清楚的看到)。根据上面的描述,我们需要对每个候选分割阈值进行增益或熵的计算才能得到最优的阈值,我们需要算N-1次增益或熵(对应温度这个变量而言就是13次计算)。能否有所改进呢?少算几次,加快速度。
 
 
如何终止树的增长?
•前面提到树的增长实际上是一个递归过程,那么这个递归什么时候到达终止条件退出递归呢?有两种方式,第一种方式是如果某一节点的分支所覆盖的样本都属于同一类的时候,那么递归就可以终止,该分支就会产生一个叶子节点.还有一种方式就是,如果某一分支覆盖的样本的个数如果小于一个阈值,那么也可产生叶子节点,从而终止树的增长。
 
如何确定叶子节点的类?
•Tree-Growth终止的方式有2种,对于第一种方式,叶子节点覆盖的样本都属于同一类,那么这种情况下叶子节点的类自然不必多言。对于第二种方式,叶子节点覆盖的样本未必属于同一类,直接一点的方法就是,该叶子节点所覆盖的样本哪个类占大多数,那么该叶子节点的类别就是那个占大多数的类。
 
 
借鉴于:大数据经典算法c4.5讲解

C4.5决策树算法概念学习的更多相关文章

  1. [转]机器学习——C4.5 决策树算法学习

    1. 算法背景介绍 分类树(决策树)是一种十分常用的分类方法.它是一种监管学习,所谓监管学习说白了很简单,就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分 ...

  2. 机器学习回顾篇(7):决策树算法(ID3、C4.5)

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  3. 机器学习-ID3决策树算法(附matlab/octave代码)

    ID3决策树算法是基于信息增益来构建的,信息增益可以由训练集的信息熵算得,这里举一个简单的例子 data=[心情好 天气好  出门 心情好 天气不好 出门 心情不好 天气好 出门 心情不好 天气不好 ...

  4. 决策树算法原理(ID3,C4.5)

    决策树算法原理(CART分类树) CART回归树 决策树的剪枝 决策树可以作为分类算法,也可以作为回归算法,同时特别适合集成学习比如随机森林. 1. 决策树ID3算法的信息论基础   1970年昆兰找 ...

  5. ID3和C4.5分类决策树算法 - 数据挖掘算法(7)

    (2017-05-18 银河统计) 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画 ...

  6. 【面试考】【入门】决策树算法ID3,C4.5和CART

    关于决策树的purity的计算方法可以参考: 决策树purity/基尼系数/信息增益 Decision Trees 如果有不懂得可以私信我,我给你讲. ID3 用下面的例子来理解这个算法: 下图为我们 ...

  7. python机器学习笔记 ID3决策树算法实战

    前面学习了决策树的算法原理,这里继续对代码进行深入学习,并掌握ID3的算法实践过程. ID3算法是一种贪心算法,用来构造决策树,ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性 ...

  8. scikit-learn决策树算法类库使用小结

    之前对决策树的算法原理做了总结,包括决策树算法原理(上)和决策树算法原理(下).今天就从实践的角度来介绍决策树算法,主要是讲解使用scikit-learn来跑决策树算法,结果的可视化以及一些参数调参的 ...

  9. 就是要你明白机器学习系列--决策树算法之悲观剪枝算法(PEP)

    前言 在机器学习经典算法中,决策树算法的重要性想必大家都是知道的.不管是ID3算法还是比如C4.5算法等等,都面临一个问题,就是通过直接生成的完全决策树对于训练样本来说是“过度拟合”的,说白了是太精确 ...

随机推荐

  1. html5的发展历程

    20年磨一剑,HTML5作为下一代Web标准,她的语义之美.人性之美.简单之美.实用之美……如同一场革命,将Web从内容平台推向标准化的应用平台,并一统各在平台阵营的标准.2008年,HTML5发布首 ...

  2. [转] shiro简单配置

    shiro(1) 注:这里只介绍spring配置模式. 因为官方例子虽然中有更加简洁的ini配置形式,但是使用ini配置无法与spring整合.而且两种配置方法一样,只是格式不一样. 涉及的jar包 ...

  3. Hibernate设置派生属性(formula)

    一.Customer中包含的字段: private static final long serialVersionUID = 1L;    private Integer id;    private ...

  4. spark共享变量

    boradcast例子代码: scala版本 spark共享变量之Accumulator 例子代码: scala版本

  5. 最大子段和问题,最大子矩阵和问题,最大m子段和问题

    1.最大子段和问题      问题定义:对于给定序列a1,a2,a3……an,寻找它的某个连续子段,使得其和最大.如( -2,11,-4,13,-5,-2 )最大子段是{ 11,-4,13 }其和为2 ...

  6. jquery 自动补全控件(支持IE6)待整理

    自动补全控件(兼容IE6):http://bassistance.de/ download地址:http://jquery.bassistance.de/autocomplete/jquery.aut ...

  7. A quest for the full InnoDB status

    When running InnoDB you are able to dig into the engine internals, look at various gauges and counte ...

  8. c编码-2

    1.重设socket缓冲区 系统提供的socket缓冲区大小为8K,你可以将之设置为64K,尤其在传输实时视频时. [root@8A_3 src]# gcc socka.c[root@8A_3 src ...

  9. noip2014普及组 比例简化

    题目描述 在社交媒体上,经常会看到针对某一个观点同意与否的民意调查以及结果.例如,对某一观点表示支持的有1498 人,反对的有 902人,那么赞同与反对的比例可以简单的记为1498:902. 不过,如 ...

  10. windows下android环境的搭建:完成后添加android其他版本

    JDK: jdk-6u10-rc2-bin-b32-windows-i586-p-12_sep_2008.exe Eclipse:Eclipse3.7.1 Android sdk:android-sd ...