题目链接:

[PKUSC2018]最大前缀和

设$f[S]$表示二进制状态为$S$的序列,任意前缀和都小于等于$0$的方案数。

设$g[S]$表示二进制状态为$S$的序列是整个序列的最大前缀和的方案数。

设$sum[S]$表示二进制状态为$S$的序列的每个数的和。

那么答案就是$\sum\limits_{S=1}^{2^n-1}sum[S]*g[S]*f[(2^n-1)-S]$。

对于$f[S]$,转移相当于在序列前面加一个数,只有当前集合中数的和小于等于$0$时可以转移。

对于$g[S]$,只能从和大于$0$的子集转移过来。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int mod=998244353;
int sum[3000000];
int f[3000000];
int g[3000000];
int v[3000000];
int n;
int ans;
int mask;
void add(int &x,int y)
{
x+=y;
if(x>mod)x-=mod;
}
int main()
{
scanf("%d",&n);
mask=(1<<n)-1;
for(int i=1;i<=n;i++)
{
scanf("%d",&v[1<<(i-1)]);
}
for(int i=1;i<=mask;i++)
{
sum[i]=sum[i-(i&-i)]+v[i&-i];
}
f[0]=1;
for(int i=1;i<=n;i++)
{
g[1<<(i-1)]=1;
}
for(int i=1;i<=mask;i++)
{
if(sum[i]>0)
{
for(int j=i^mask;j;j-=j&-j)
{
int k=j&-j;
add(g[i|k],g[i]);
}
}
else
{
for(int j=i;j;j-=j&-j)
{
int k=j&-j;
add(f[i],f[i^k]);
}
}
}
for(int i=1;i<=mask;i++)
{
ans=(ans+1ll*g[i]*f[mask^i]%mod*sum[i]%mod)%mod;
}
printf("%d",(ans%mod+mod)%mod);
}

[PKUSC2018]最大前缀和——状压DP的更多相关文章

  1. BZOJ5369:[PKUSC2018]最大前缀和(状压DP)

    Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...

  2. LOJ#6433. 「PKUSC2018」最大前缀和 状压dp

    原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这 ...

  3. LOJ 6433 「PKUSC2018」最大前缀和——状压DP

    题目:https://loj.ac/problem/6433 想到一个方案中没有被选的后缀满足 “该后缀的任一前缀和 <=0 ”. 于是令 dp[ S ] 表示选了点集 S ,满足任一前缀和 & ...

  4. 【PKUSC2018】【loj6433】最大前缀和 状压dp

    这题吼啊... 然而还是想了$2h$,写了$1h$. 我们发现一个性质:若一个序列$p$能作为前缀和,那么在序列$p$中,包含序列$p$最后一个数的所有子序列必然都是非负的. 那么,我们 令$f[i] ...

  5. BZOJ_5369_[Pkusc2018]最大前缀和_状压DP

    BZOJ_5369_[Pkusc2018]最大前缀和_状压DP Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于 ...

  6. 「PKUSC2018」最大前缀和(状压dp)

    前言 考试被\(hyj\)吊着打... Solution 考虑一下如果前缀和如果在某一个位置的后面的任意一个前缀和都<=0,肯定这就是最大的. 然后这样子就考虑左右两边的状压dp,然后就好了. ...

  7. Loj 6433. 「PKUSC2018」最大前缀和 (状压dp)

    题面 Loj 题解 感觉挺难的啊- 状压\(dp\) 首先,有一个性质 对于一个序列的最大前缀和\(\sum_{i=1}^{p} A[i]\) 显然对于每个\(\sum_{i=p+1}^{x}A[i] ...

  8. 【洛谷5369】[PKUSC2018] 最大前缀和(状压DP)

    点此看题面 大致题意: 对于一个序列,求全排列下最大前缀和之和. 状压\(DP\) 考虑如果单纯按照题目中对于最大前缀和的定义,则一个序列它的最大前缀和是不唯一的. 为了方便统计,我们姑且规定,如果一 ...

  9. T2988 删除数字【状压Dp+前缀和优化】

    Online Judge:从Topcoder搬过来,具体哪一题不清楚 Label:状压Dp+前缀和优化 题目描述 给定两个数A和N,形成一个长度为N+1的序列,(A,A+1,A+2,...,A+N-1 ...

随机推荐

  1. NRF52832 Mesh调试,使其同时支持串口打印和RTT打印

    查看开发环境里面,是否有这个文件,如果没有你的话,则添加文件. 然后要在sdk_config.h中添加使能 然后打开刚才添加的文件retarget.c,主意里面这些地方 这里它进行判断,要么使用RTT ...

  2. SqlServer2008 / SqlServer2012 禁用windows登录,sa忘记密码或密码过期如何登陆

    以管理员身份运行cmd 1.cmd 下  停止SqlServer服务,net stop mssqlserver: 2.新建windows账号test,加入administrators组里,授予管理员权 ...

  3. MySQL的安装及简单配置

    一 .数据库概念 Mysql能干嘛呢? 它就是一款软件,安装在任何一台计算机或者服务器上的时候,只要我告诉它创建一个文件,新增一个数据,删除一个数据它就能帮我去做想要的操作 那我们暂且能不能理解为my ...

  4. JavaScript中对null和undefined的理解

    前沿: 今天工作中遇到了监视一个变量是undefined,结果判断写的是==null 返回值是true,这个结果引起了我对这两个东西的兴趣. 查询了相关的文章理解并测试了.发现有以下特点: 1.广义上 ...

  5. android开机启动流程说明

    android开机启动流程说明 第一步:启动linux 1.Bootloader 2.Kernel 第二步android系统启动:入口为init.rc(system\core\rootdir) 1./ ...

  6. win10家庭版本不能连接远程桌面

    出现身份验证错误 要求的函数不受支持,CredSSP 加密 Oracle 修正 然后网上大多数教程是叫你修改组策略,然后试过坑的我发现自己的家庭版没有组策略,天真的我在网上找寻了装组策略的代码,一顿捣 ...

  7. openwrt双机热备

    转自:https://oldwiki.archive.openwrt.org/doc/recipes/high-availability 先记号一下,有空再仔细研究. ---------------- ...

  8. CQRS的全称是Command Query Responsibility Segregation

    CQRS时,我们在讨论些神马?   当我写下这个标题的时候,我就有些后悔了,题目有点大,不太好控制.但我还是打算尝试一下,通过这篇内容来说清楚CQRS模式,以及和这个模式关联的其它东西.希望我能说得清 ...

  9. Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-E. Let Them Slide-思维+数据结构

    Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-E. Let Them Slide-思维+数据结构 [Problem ...

  10. python logging记录日志的方式

    python的logging模块提供了标准的日志接口,可以通过它存储各种格式的日志,日志级别等级:critical > error > warning > info > deb ...