8. Object References, Mutability, and Recycling
1. Variables Are Not Boxes

# Think variables as sticky notes
a = [1, 2, 3]
b = a
a.append(4)
print b # [1, 2, 3, 4] # 1. The object is created before the assignment. So variable is
# assigned to an object, not the other way around.
2. Identity, Equality, and Aliases
charles = {'name': 'Charles', 'born': 1832}
lewis = charles # alias
print lewis is charles # True
print id(lewis) == id(charles) # True
lewis['born'] = 1844
print charles # {'born': 1844, 'name': 'Charles'}
alex = {'name': 'Charles', 'born': 1844}
print alex == charles # True (same value)
print alex is charles # False (different identities)
# 1. In CPython, id() returns the memory address of the object, but
# it may be something else in another Python interpreter. The key
# point is that the ID is guaranteed to be a unique numeric label,
# and it will never change during the life of the object.
# 2. The is operator is faster than ==, because it cannot be
# overloaded, so Python does not have to find and invoke special
# methods to evaluate it, and computing is as simple as comparing
# two integer IDs.
# 3. a == b is syntactic sugar for a.__eq__(b). The __eq__ method
# inherited from object compares object IDs, so it produces the
# same result as is. But most built-in types override __eq__ with
# more meaningful implementations that actually take into account
# the values of the object attributes. Equality may involve a lot
# of processing. (large collections / deeply nested structures)
t1 = (1, 2, [30, 40])
t2 = (1, 2, [30, 40])
print t1 == t2 # True
print id(t1[-1]) # 4302515784
t1[-1].append(99)
print t1 # (1, 2, [30, 40, 99])
print id(t1[-1]) # 4302515784
print t1 == t2 # False # 1. What can never change in a tuple is the identity of the
# items it contains.
# 2. Tuples, like most Python collections—lists, dicts, sets,
# etc.--hold references to objects. On the other hand, single-type
# sequences like str, bytes, and array.array are flat: they don’t
# contain references but physically hold their data--characters,
# bytes, and numbers--in contiguous memory.
3. Copies Are Shallow by Default
import copy
l1 = [3, [55, 44], (7, 8, 9)]
l2 = list(l1) # l2 = l1[:] or l2 = copy.copy(l1)
print l2 # [3, [55, 44], (7, 8, 9)]
print l2 == l1 # True
print l2 is l1 # False
l1.append(100)
l1[1].remove(55)
print l1 # [3, [44], (7, 8, 9), 100]
print l2 # [3, [44], (7, 8, 9)]
l3 = copy.deepcopy(l2)
l3[1].append(55)
print l3 # [3, [44, 55], (7, 8, 9)]
print l2 # [3, [44], (7, 8, 9)] # 1. Using the constructor or [:] or copy.copy() produces a shallow copy.

# Cyclic references
a = [10, 20]
b = [a, 30]
a.append(b)
print a # [10, 20, [[...], 30]]
c = copy.deepcopy(a)
print c # [10, 20, [[...], 30]]
[Notes]: You can control the behavior of both copy and deepcopy by implementing the __copy__() and __deepcopy__() special methods as described in the copy module documentation.
4. Function Parameters as References
def f(a, b):
a += b
return a x = 1
y = 2
print f(x, y) # 3
print x, y # 1 2
a = [1, 2]
b = [3, 4]
print f(a, b) # [1, 2, 3, 4]
print a, b # [1, 2, 3, 4] [3, 4]
t = (10, 20)
u = (30, 40)
print f(t, u) # (10, 20, 30, 40)
print t, u # (10, 20) (30, 40) 1. The only mode of parameter passing in Python is call by sharing.
which means the parameters inside the function become aliases
of the actual arguments.
2. The result of this scheme is that a function may change any
mutable object passed as a parameter, but it cannot change the
identity of those objects class A:
def __init__(self, a_list=[]):
self.a_list = a_list
def add(self, name):
self.a_list.append(name) a1 = A()
a1.add('A')
print a1.a_list # ['A']
a2 = A()
a2.add('B')
print a2.a_list # ['A', 'B']
print a1.a_list # ['A', 'B']
print a1.a_list is a2.a_list # True
print A.__init__.__defaults__[0] is a1.a_list # True # 1. Two objects don’t get an initial list end up sharing the same
# list among themselves.
# 2. When the module is loaded, and the default values become
# attributes of the function object. So if a default value is a
# mutable object, and you change it, the change will affect every
# future call of the function. class B:
def __init__(self, a_list=None):
if a_list is None:
self.a_list = []
else:
self.a_list = a_list
# self.a_list = list(a_list) # make a copy
def add(self, name):
self.a_list.append(name) l = [1, 2, 3]
b1 = B(l)
b1.add(5)
print b1.a_list # [1, 2, 3, 5]
print l # [1, 2, 3, 5] # 1. You should think twice before aliasing the argument object
# by simply assigning it to an instance variable in your class.
# If in doubt, make a copy.
5. del and Garbage Collection
- The del statement deletes names, not objects. An object may be garbage collected as result of a del command, but only if the variable deleted holds the last reference to the object, or if the object becomes unreachable. Rebinding a variable may also cause the number of references to an object to reach zero, causing its destruction.
- unreachable: If two objects refer to each other, they may be destroyed if the garbage collector determines that they are otherwise unreachable because their only references are their mutual references.
There is a __del__ special method, but it does not cause the disposal of the instance, and should not be called by your code. __del__ is invoked by the Python interpreter when the instance is about to be destroyed to give it a chance to release external re‐sources. You will seldom need to implement __del__ in your own code
In CPython, the primary algorithm for garbage collection is reference counting. Es‐sentially, each object keeps count of how many references point to it. As soon as that refcount reaches zero, the object is immediately destroyed: CPython calls the __del__ method on the object (if defined) and then frees the memory allocated to the object. In CPython 2.0, a generational garbage collection algorithm was added to detect groups of objects involved in reference cycles—which may be unreachable even with outstanding references to them, when all the mutual references are contained within the group. Other implementations of Python have more sophisticated garbage collectors that do not rely on reference counting, which means the __del__ method may not be called immediately when there are no more references to the object.
import weakref
s1 = {1, 2, 3}
s2 = s1
def bye():
print('Gone with the wind...')
ender = weakref.finalize(s1, bye)
print(ender.alive) # True
del s1
print(ender.alive) # True
s2 = 'spam' # Gone with the wind...
print(ender.alive) # False # 1. del does not delete objects, but objects may be deleted
# as a consequence of being unreachable after del is used.
# 2. This works because final ize holds a weak reference to {1, 2, 3}.
6. Weak References
P236
7. Tricks Python Plays with Immutables
P240
8. Object References, Mutability, and Recycling的更多相关文章
- 《流畅的Python》Object References, Mutability, and Recycling--第8章
Object References, Mutability, and Recycling 本章章节: Variables Are Not Boxes identity , Equality , Al ...
- object references an unsaved transient instance - save the transient instance before flushing错误
异常1:not-null property references a null or transient value解决方法:将“一对多”关系中的“一”方,not-null设置为false(参考资料: ...
- ManyToMany【项目随笔】关于异常object references an unsaved transient instance
在保存ManyToMany 时出现异常: org.springframework.dao.InvalidDataAccessApiUsageException: org.hibernate.Tran ...
- Effective Java 06 Eliminate obsolete object references
NOTE Nulling out object references should be the exception rather than the norm. Another common sour ...
- [SAP ABAP开发技术总结]数据引用(data references)、对象引用(object references)
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...
- 三大框架常遇的错误:hibernate : object references an unsaved transient instance
hibernate : object references an unsaved transient instance 该错误是操作顺序的问题,比如: save或update顺序问题---比方学生表和 ...
- Exception in thread "main" org.hibernate.TransientObjectException: object references an unsaved tran
今天在使用一对多,多对一保存数据的时候出现了这个错误 Hibernate错误: Exception in thread "main" org.hibernate.Transient ...
- ERROR org.hibernate.internal.SessionImpl - HHH000346: Error during managed flush [object references an unsaved transient instance - save the transient instance before flushing: cn.itcast.domain.Custom
本片博文整理关于Hibernate中级联策略cascade和它导致的异常: Exception in thread "main" org.hibernate.TransientOb ...
- object references an unsaved transient instance save the transient instance before flushing
object references an unsaved transient instance save the transient instance before flushing 对象引用未保存的 ...
随机推荐
- HDU1003 最大连续子序列
Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- PHP服务器完整安装
一.腾讯云购买服务器 Linux 获取root登录账号密码,进入云服务控制台,选择实例,链接Linux 确保是纯净的系统,没装任何环境,否则可能会安装失败 先配置安全组,否则默认禁用所有规则也会导致安 ...
- idea快捷键整合-无鼠标操作idea
查找所有快捷键 Ctrl + Shift + A.输入action或操作的名字. 全屏模式 使用Alt+V快捷键,弹出View视图,然后选择Enter Full Screen. 进入这个模式后,我想看 ...
- 静态路由、RIP、OSPF、BGP
主要内容包含以下四点:(1)静态路由 (2)动态路由 (3)生成树 (4)VLAN 1. 什么是静态路由? 答:静态路由是管理人员手动配置和管理的路由 2. 静态路由由那些优点? 答:配置简单 ...
- 思科S系列220系列交换机多个漏洞预警
补天漏洞响应平台近期监测思科官方发布了关于思科 S 系列 220 系列交换机的3个漏洞修复通告,其中包含2个高危漏洞,最高CVSS 3.0评分9.8. 更新时间 2019年 08月 09日 威胁目标 ...
- Java学习笔记-设计模式
常见设计模式有23种,设计模式是解决某一类问题最行之有效的方法 单例设计模式 解决一个类在内存中只存在一个对象 思想 为了避免其他程序过多建立该类对象.先禁止其他程序建立该类对象 还为了让其他程序可以 ...
- beego项目和go项目 打包部署到linux
参考文章: https://www.jianshu.com/p/64363dff9721 [beego项目] 一. 打包 1. 打开Terminal 定位到工程的 main.go 文件夹目录 2. 执 ...
- 最新 美图java校招面经 (含整理过的面试题大全)
从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.美图等10家互联网公司的校招Offer,因为某些自身原因最终选择了美图.6.7月主要是做系统复习.项目复盘.LeetCode ...
- 带你手写基于 Spring 的可插拔式 RPC 框架(五)注册中心
注册中心代码使用 zookeeper 实现,我们通过图片来看看我们注册中心的架构. 首先说明, zookeeper 的实现思路和代码是参考架构探险这本书上的,另外在 github 和我前面配置文件中的 ...
- P61IDEA的常用快捷键
Alt+Enter 导入包,自动修正代码 Ctrl+Y 删除光标所在行 Ctrl+D 复制光标所在行的内容,插入光标位置下面 Ctrl+Alt+L 格式化代码 Ctrl+/ 单行注释 Al ...