8. Object References, Mutability, and Recycling
1. Variables Are Not Boxes

# Think variables as sticky notes
a = [1, 2, 3]
b = a
a.append(4)
print b # [1, 2, 3, 4] # 1. The object is created before the assignment. So variable is
# assigned to an object, not the other way around.
2. Identity, Equality, and Aliases
charles = {'name': 'Charles', 'born': 1832}
lewis = charles # alias
print lewis is charles # True
print id(lewis) == id(charles) # True
lewis['born'] = 1844
print charles # {'born': 1844, 'name': 'Charles'}
alex = {'name': 'Charles', 'born': 1844}
print alex == charles # True (same value)
print alex is charles # False (different identities)
# 1. In CPython, id() returns the memory address of the object, but
# it may be something else in another Python interpreter. The key
# point is that the ID is guaranteed to be a unique numeric label,
# and it will never change during the life of the object.
# 2. The is operator is faster than ==, because it cannot be
# overloaded, so Python does not have to find and invoke special
# methods to evaluate it, and computing is as simple as comparing
# two integer IDs.
# 3. a == b is syntactic sugar for a.__eq__(b). The __eq__ method
# inherited from object compares object IDs, so it produces the
# same result as is. But most built-in types override __eq__ with
# more meaningful implementations that actually take into account
# the values of the object attributes. Equality may involve a lot
# of processing. (large collections / deeply nested structures)
t1 = (1, 2, [30, 40])
t2 = (1, 2, [30, 40])
print t1 == t2 # True
print id(t1[-1]) # 4302515784
t1[-1].append(99)
print t1 # (1, 2, [30, 40, 99])
print id(t1[-1]) # 4302515784
print t1 == t2 # False # 1. What can never change in a tuple is the identity of the
# items it contains.
# 2. Tuples, like most Python collections—lists, dicts, sets,
# etc.--hold references to objects. On the other hand, single-type
# sequences like str, bytes, and array.array are flat: they don’t
# contain references but physically hold their data--characters,
# bytes, and numbers--in contiguous memory.
3. Copies Are Shallow by Default
import copy
l1 = [3, [55, 44], (7, 8, 9)]
l2 = list(l1) # l2 = l1[:] or l2 = copy.copy(l1)
print l2 # [3, [55, 44], (7, 8, 9)]
print l2 == l1 # True
print l2 is l1 # False
l1.append(100)
l1[1].remove(55)
print l1 # [3, [44], (7, 8, 9), 100]
print l2 # [3, [44], (7, 8, 9)]
l3 = copy.deepcopy(l2)
l3[1].append(55)
print l3 # [3, [44, 55], (7, 8, 9)]
print l2 # [3, [44], (7, 8, 9)] # 1. Using the constructor or [:] or copy.copy() produces a shallow copy.

# Cyclic references
a = [10, 20]
b = [a, 30]
a.append(b)
print a # [10, 20, [[...], 30]]
c = copy.deepcopy(a)
print c # [10, 20, [[...], 30]]
[Notes]: You can control the behavior of both copy and deepcopy by implementing the __copy__() and __deepcopy__() special methods as described in the copy module documentation.
4. Function Parameters as References
def f(a, b):
a += b
return a x = 1
y = 2
print f(x, y) # 3
print x, y # 1 2
a = [1, 2]
b = [3, 4]
print f(a, b) # [1, 2, 3, 4]
print a, b # [1, 2, 3, 4] [3, 4]
t = (10, 20)
u = (30, 40)
print f(t, u) # (10, 20, 30, 40)
print t, u # (10, 20) (30, 40) 1. The only mode of parameter passing in Python is call by sharing.
which means the parameters inside the function become aliases
of the actual arguments.
2. The result of this scheme is that a function may change any
mutable object passed as a parameter, but it cannot change the
identity of those objects class A:
def __init__(self, a_list=[]):
self.a_list = a_list
def add(self, name):
self.a_list.append(name) a1 = A()
a1.add('A')
print a1.a_list # ['A']
a2 = A()
a2.add('B')
print a2.a_list # ['A', 'B']
print a1.a_list # ['A', 'B']
print a1.a_list is a2.a_list # True
print A.__init__.__defaults__[0] is a1.a_list # True # 1. Two objects don’t get an initial list end up sharing the same
# list among themselves.
# 2. When the module is loaded, and the default values become
# attributes of the function object. So if a default value is a
# mutable object, and you change it, the change will affect every
# future call of the function. class B:
def __init__(self, a_list=None):
if a_list is None:
self.a_list = []
else:
self.a_list = a_list
# self.a_list = list(a_list) # make a copy
def add(self, name):
self.a_list.append(name) l = [1, 2, 3]
b1 = B(l)
b1.add(5)
print b1.a_list # [1, 2, 3, 5]
print l # [1, 2, 3, 5] # 1. You should think twice before aliasing the argument object
# by simply assigning it to an instance variable in your class.
# If in doubt, make a copy.
5. del and Garbage Collection
- The del statement deletes names, not objects. An object may be garbage collected as result of a del command, but only if the variable deleted holds the last reference to the object, or if the object becomes unreachable. Rebinding a variable may also cause the number of references to an object to reach zero, causing its destruction.
- unreachable: If two objects refer to each other, they may be destroyed if the garbage collector determines that they are otherwise unreachable because their only references are their mutual references.
There is a __del__ special method, but it does not cause the disposal of the instance, and should not be called by your code. __del__ is invoked by the Python interpreter when the instance is about to be destroyed to give it a chance to release external re‐sources. You will seldom need to implement __del__ in your own code
In CPython, the primary algorithm for garbage collection is reference counting. Es‐sentially, each object keeps count of how many references point to it. As soon as that refcount reaches zero, the object is immediately destroyed: CPython calls the __del__ method on the object (if defined) and then frees the memory allocated to the object. In CPython 2.0, a generational garbage collection algorithm was added to detect groups of objects involved in reference cycles—which may be unreachable even with outstanding references to them, when all the mutual references are contained within the group. Other implementations of Python have more sophisticated garbage collectors that do not rely on reference counting, which means the __del__ method may not be called immediately when there are no more references to the object.
import weakref
s1 = {1, 2, 3}
s2 = s1
def bye():
print('Gone with the wind...')
ender = weakref.finalize(s1, bye)
print(ender.alive) # True
del s1
print(ender.alive) # True
s2 = 'spam' # Gone with the wind...
print(ender.alive) # False # 1. del does not delete objects, but objects may be deleted
# as a consequence of being unreachable after del is used.
# 2. This works because final ize holds a weak reference to {1, 2, 3}.
6. Weak References
P236
7. Tricks Python Plays with Immutables
P240
8. Object References, Mutability, and Recycling的更多相关文章
- 《流畅的Python》Object References, Mutability, and Recycling--第8章
Object References, Mutability, and Recycling 本章章节: Variables Are Not Boxes identity , Equality , Al ...
- object references an unsaved transient instance - save the transient instance before flushing错误
异常1:not-null property references a null or transient value解决方法:将“一对多”关系中的“一”方,not-null设置为false(参考资料: ...
- ManyToMany【项目随笔】关于异常object references an unsaved transient instance
在保存ManyToMany 时出现异常: org.springframework.dao.InvalidDataAccessApiUsageException: org.hibernate.Tran ...
- Effective Java 06 Eliminate obsolete object references
NOTE Nulling out object references should be the exception rather than the norm. Another common sour ...
- [SAP ABAP开发技术总结]数据引用(data references)、对象引用(object references)
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...
- 三大框架常遇的错误:hibernate : object references an unsaved transient instance
hibernate : object references an unsaved transient instance 该错误是操作顺序的问题,比如: save或update顺序问题---比方学生表和 ...
- Exception in thread "main" org.hibernate.TransientObjectException: object references an unsaved tran
今天在使用一对多,多对一保存数据的时候出现了这个错误 Hibernate错误: Exception in thread "main" org.hibernate.Transient ...
- ERROR org.hibernate.internal.SessionImpl - HHH000346: Error during managed flush [object references an unsaved transient instance - save the transient instance before flushing: cn.itcast.domain.Custom
本片博文整理关于Hibernate中级联策略cascade和它导致的异常: Exception in thread "main" org.hibernate.TransientOb ...
- object references an unsaved transient instance save the transient instance before flushing
object references an unsaved transient instance save the transient instance before flushing 对象引用未保存的 ...
随机推荐
- Hadoop 部署之环境准备(一)
目录 一.软硬件规划 二.主机名解析 三.配置 SSH 互信 四.创建用户 五.JDK 的安装 一.软硬件规划 ID 主机类型 主机名 IP 应用软件 操作系统 硬件配置 1 物理机 namenode ...
- django 之(五) --- 验证码|富文本|邮箱短信
验证码 在用户登录,注册以及一些敏感操作的时候,我们为了防止服务器被暴力请求,或爬虫爬取,我们可以使用验证码进行过滤,减轻服务器的压力. 原生实现: 库名:pip install Pillow ...
- ABC技术落地_成功带动lot物联网行业、金融科技行业、智能人才教育。
ABC技术:AI:Python神经网络和自然语言处理(NLP):C ++ 机器学习和神经网络:Java自然语言处理.搜索算法.神经网络:Lisp归纳逻辑项目和机器学习.Big Date:R.Pytho ...
- 用CapsNets做电能质量扰动分类(2019-08-05)
当下最热神经网络为CNN,2017年10月,深度学习之父Hinton发表<胶囊间的动态路由>(Capsule Networks),最近谷歌正式开源了Hinton胶囊理论代码,提出的胶囊神经 ...
- RHCE\RHCSA
加油,老杨,所有的事情坚持到最后都是最好的,之所以现在觉得不好,是因为还没有坚持到最后,终于考过了,哈哈哈,下一个目标OCP
- GFS(Google File System,谷歌文件系统)----(1)读写一致性
GFS副本控制协议--中心化副本控制协议 对于副本集的更新操作有一个中心节点来协调管理,将分布式的并发操作转化为单点的并发操作,从而保证副本集内各节点的一致性.在GFS中,中心节点称之为Primary ...
- 注解@PostConstruct与@PreDestroy详解及实例
Java EE5 引入了@PostConstruct和@PreDestroy这两个作用于Servlet生命周期的注解,实现Bean初始化之前和销毁之前的自定义操作.此文主要说明@PostConstru ...
- c# base64及MD5工具类
using System; using System.Collections.Generic; using System.Data; using System.IO; using System.Lin ...
- python学习-2 python安装和环境变量的设置
python的下载 1.可以去python官网下载,https://www.python.org/ 2.下载完成后,安装即可.(具体可以百度,网上都有很多安装方法) python的检测 1.打开开始- ...
- LeetCode 答案(python)18-24
18.四个数之和 给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target ...