01-TensorFlow基础

Tensorflow是什么

Google的开源软件库

  • 采取数据流图,用于数值计算
  • 支持多种平台 - GPU、CPU、 移动设备
  • 最初用于深度学习,变得越来越通用

Tensorflow数据结构

#数据流图

  1. 线:节点之间的输入输出关系,线上运输张量. tensor:张量- 指代数据

  2. 节点:operation (op): 专门运算的操作节点,所有的操作都是一个op,处理数据

  • 只要使用tensorflow的API定义的函数都是OP
  • 节点被分配到各种计算设备上运行

  1. graph: 图 整个的程序结构
  • 本质上是一个分配的内存位置,默认有一个图,所有的tensor 和 op 的内存地址都是一样的。
  • 不同的图内存地址不一样,计算的过程中互不干扰
  1. session: 会话: 运算程序的图 (只能运行一张图,可以在会话中指定图去运行 graph = g)
  • 运行图的结构
  • 分配资源计算
  • 掌握资源(变量、队列、线程)

Tensorflow的特性

  • 高度的灵活性,便于调用函数,也可以写自己的封装
  • 真正的可移植性,在不同的设备上都可以简单运行
  • 产品和科研结合
  • 自动求微分,主要用于反向传播计算
  • 多语言支持,C++, Java , JS, R
  • 性能最优化

Tensorflow的前后端系统

  1. 前端系统:定义程序的图的机构
  2. 后端系统: 运算图结构

Tensorflow版本变迁

Tensorflow1.0 主要特性

  • XLA: Accelerate Linear Algebra

    • 提升训练速度58倍
    • 可以在移动设备上运行
  • 引用更高级别的API
    • tf.layers/ tf.metrics / tf.losses/ tf.keras
  • Tensorflow调试器
  • 支持docker镜像,引入tensorflow serving 服务

Tensorflow 2.0 主要特性

  • 使用tf.keras 和 eager mode 进行简单模型构建
  • 鲁棒的跨平台模型部署
  • 强大的研究实验
  • 清除了不推荐使用和重复的API

Tensorflow2.0 简化模型开发流程

  1. 使用tf.data加载数据
  2. 使用tf.keras 构建模型,也可以使用premade estimator 验证模型
    • 使用tensorflow hub进行迁移学习
    • 注: 迁移学习 - 使用一个前人预先训练好的,应用在其他领域的网络作为模型训练的起点,站在前人基础上更进一步,不必重新发明轮子。
  3. 使用eager mode 进行运行和调试
  4. 使用分发策略进行分布式训练
  5. 导出到SavedModel
  6. 使用Tensorflow Serve, Tensorflow Lite, Tensorflow.js

Tensorflow 强大的跨平台能力

  • Tensorflow 服务

    • 直接通过HTTP/ TEST 或 GTPC/协议缓冲区
  • Tensorflow Lite - Android, iOS 和嵌入式
  • Tensorflow.js - Javascript 部署
  • 其他语言

Tensorflow vs. Pytorch

入门时间(易用性)

  • Tensorflow 1.*

    • 静态图 ,构建完之后不可以更改, 效率高
    • 额外概念, 会话,变量,占位符
    • 写样本代码
  • Tensorflow 2.0
    • 动态图, 构建完之后可以更改, 效率不高,调试容易
    • Eager mode 直接集成在python中
  • Pytorch
    • 动态图
    • numpy扩展,集成在python
"""
不同方式求解 1 + 1/2 + 1/2^2 + 1/2^3 + ...... + 1/2^50
""" # 1. tensorflow 1.*求解
import tensorflow as tf
print(tf.__version__)
x = tf.Variable(0.)
y = tf.Variable(1.) add_op = x.assign(x + y)
div_op = y.assign(y / 2) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for iteration in range(50):
sess.run(add_op)
sess.run(div_op)
print(x.eval()) # 2. pytorch 求解
import torch
print(torch.__version__) x = torch.Tensor([0.])
y = torch.Tensor([1.])
for iteration in range(50):
x = x + y
y = y / 2
print(x) # 3. tensorflow 2.0 求解
import tensorflow as tf
print(tf.__version__)
x = tf.constant(0.)
y = tf.constant(1.)
for iteration in range(50):
x = x + y
y = y / 2
print(x.numpy()) # 4. 纯python求解
x = 0
y = 1
for iteration in range(50):
x = x + y
y = y / 2
print(x) # 精度有点不一样

图创建和调试

  • Tensorflow 1.*

    • 静态图,难以调试, 需要使用tfdbg
  • Tensorflow 2.0 与 pytorch
    • 动态图,python自带的调试工具

全面性

  • python缺少少量的功能,使用频次很低

    • 沿维翻转张量 (np.flip, np.flipud, np.fliplr)
    • 检查无穷与非数值张量(np.is_nan, np.is_inf)
    • 快速傅里叶变换 (np.fft)

序列化和部署

  • Tensorflow 支持更加广泛,多语言,跨平台
  • pytorch 支持比较简单

01-TensorFlow2.0基础的更多相关文章

  1. SpringBoot2.0基础案例(01):环境搭建和RestFul风格接口

    一.SpringBoot 框架的特点 1.SpringBoot2.0 特点 1)SpringBoot继承了Spring优秀的基因,上手难度小 2)简化配置,提供各种默认配置来简化项目配置 3)内嵌式容 ...

  2. TensorFlow2.0(1):基本数据结构—张量

    1 引言 TensorFlow2.0版本已经发布,虽然不是正式版,但预览版都发布了,正式版还会远吗?相比于1.X,2.0版的TensorFlow修改的不是一点半点,这些修改极大的弥补了1.X版本的反人 ...

  3. swift3.0基础语法

    swift 3.0 基础语法 目录 01-变量和常量 02-运算符 03-可选项 04-条件语句 05-循环 06-字符串 07-元组 08-数组 09-字典 10-对象和类 11-枚举 12-属性 ...

  4. 【转】WF4.0 (基础篇)

    转自:http://www.cnblogs.com/foundation/category/215023.html 作者:WXWinter  ——  兰竹菊梅★春夏秋冬☆ —— wxwinter@16 ...

  5. Linux网络服务01——Linux网络基础设置

    Linux网络服务01--Linux网络基础设置 一.查看及测试网络 1.使用ifconfig命令查看网络接口 (1)查看活动的网络接口 ifconfig命令 [root@crushlinux ~]# ...

  6. (六)SpringBoot2.0基础篇- Redis整合(JedisCluster集群连接)

    一.环境 Redis:4.0.9 SpringBoot:2.0.1 Redis安装:Linux(Redhat)安装Redis 二.SpringBoot整合Redis 1.项目基本搭建: 我们基于(五) ...

  7. javaScript系列 [01]-javaScript函数基础

    [01]-javaScript函数基础 1.1 函数的创建和结构 函数的定义:函数是JavaScript的基础模块单元,包含一组语句,用于代码复用.信息隐蔽和组合调用. 函数的创建:在javaScri ...

  8. _00017 Kafka的体系结构介绍以及Kafka入门案例(0基础案例+Java API的使用)

    博文作者:妳那伊抹微笑 itdog8 地址链接 : http://www.itdog8.com(个人链接) 博客地址:http://blog.csdn.net/u012185296 博文标题:_000 ...

  9. Google工程师亲授 Tensorflow2.0-入门到进阶

    第1章 Tensorfow简介与环境搭建 本门课程的入门章节,简要介绍了tensorflow是什么,详细介绍了Tensorflow历史版本变迁以及tensorflow的架构和强大特性.并在Tensor ...

  10. 『TensorFlow2.0正式版教程』极简安装TF2.0正式版(CPU&GPU)教程

    0 前言 TensorFlow 2.0,今天凌晨,正式放出了2.0版本. 不少网友表示,TensorFlow 2.0比PyTorch更好用,已经准备全面转向这个新升级的深度学习框架了. ​ 本篇文章就 ...

随机推荐

  1. 如何实现一个MVVM

    说一说我对于mvvm模型的理解吧 我第一次接触mvvm也是在学习vue的时候,在我看来vue和react都是数据驱动视图,但是vue属于标准的mvvm模型,react是从组件化演变而来 不多废话,直接 ...

  2. Redis 的底层数据结构(压缩列表)

    上一篇我们介绍了 redis 中的整数集合这种数据结构的实现,也谈到了,引入这种数据结构的一个很大的原因就是,在某些仅有少量整数元素的集合场景,通过整数集合既可以达到字典的效率,也能使用远少于字典的内 ...

  3. L0、L1、L2范数正则化

    一.范数的概念 向量范数是定义了向量的类似于长度的性质,满足正定,齐次,三角不等式的关系就称作范数. 一般分为L0.L1.L2与L_infinity范数. 二.范数正则化背景 1. 监督机器学习问题无 ...

  4. 如何在HTML中设置字体颜色,你知道这几种方式吗?

    color设置字体颜色 在color设置字体颜色之前,我们首先了解color在CSS中有几种取值方式,一共有4种方式,若有不全还请在评论区告知谢谢,4种方式如下: 十六进制.十进制. 英文单词.十六进 ...

  5. Linux软件包管理和磁盘管理实践

    一.自建yum仓库,分别为网络源和本地源 本地yum仓库的搭建就是以下三个步骤: 创建仓库目录结构 上传相应的包到目录下,或者直接挂载光盘也行,如果挂载光盘,第三步就可以省略,因为光盘默认里有repo ...

  6. Unity入门--实用知识

    目录 1. VS适配 2.实用快捷操作 3.Unity API文档 4.项目整理 1. VS适配 让你的VS完美支持Unity的脚本编写可以让你写起C#脚本来事半功倍,比如代码补全功能,可以参考下面这 ...

  7. 020.掌握Pod-Pod基础使用

    一 Pod定义详解 1.1 完整Pod定义文件 apiVersion: v1 #必选,版本号,例如v1,版本号必须可以用 kubectl api-versions 查询到 kind: Pod #必选, ...

  8. CentOS7下安装带用户认证的squid服务器(无防火墙)

    1       安装squid服务: yum install squid 安装htpasswd : yum install httpd-tools 2       配置squid配置文件 #该定义需在 ...

  9. 修改 processor.php 文件,监听用户对该应用的消息

    修改 processor.php 文件,监听用户对该应用的消息 class cgc_fdModuleProcessor extends WeModuleProcessor { public funct ...

  10. VLAN实验(1)Access接口

    1.选择两台S3700的交换机,5台PC机,并按照下图链接好并填写IP,完成此拓扑图 2.由于现在我们还没有划分VLAN,这5台PC,还在同一个VLAN中,现在我们启动所有的设备,这是所有的主机应该是 ...