一道经典的dp题

在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.

我们先看下这道题的简单版本

有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。

这道题不是环状的,我们可以直接dp解决,一开始我设的是f[i][j]表是合并i-j这个区间内的最小代价,于是有了状态转移方程

f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+s[j]-s[i-1]) (i<=k<=j)

于是写下了下面的代码

#include<bits/stdc++.h>
using namespace std;
int n,f[110][110],a[110];
int s[110];
int main(){
scanf("%d",&n);
memset(f,0x3f,sizeof(f));
for(int i=1;i<=n;++i){
scanf("%d",&a[i]);
f[i][i]=0;
s[i]=s[i-1]+a[i];
}
for(int i=1;i<=n;++i){
for(int j=i;j<=n;++j){
for(int k=i;k<=j;++k){
f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+s[j]-s[i-1]);
}
}
}
printf("%d",f[1][n]);
return 0;
}

然鹅答案错误,为什么?

在同机房的大佬的帮助下我明白了

因为求大区间是要用到小区间的值,可是上面这个程序固定了起点就一直向后跑会导致有些点更新过晚,要用的时候却用不到,于是我写下了下面的代码

#include<bits/stdc++.h>
using namespace std;
int n,f[110][110],a[110],T=10;
int s[110];
int main(){
scanf("%d",&n);
memset(f,0x3f,sizeof(f));
for(int i=1;i<=n;++i){
scanf("%d",&a[i]);
f[i][i]=0;
s[i]=s[i-1]+a[i];
}
while(T--){
for(int i=1;i<=n;++i){
for(int j=i;j<=n;++j){
for(int k=i;k<=j;++k){
f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+s[j]-s[i-1]);
}
}
}
}
printf("%d",f[1][n]);
return 0;
}

既然一遍跑不出答案,那我多跑几遍不就好了,同机房的大佬都震惊了,虽然答案是对的,但却并不是正解,正解应该是在外面枚举长度,再枚举起点,算出终点dp

代码

#include<bits/stdc++.h>
using namespace std;
int n,f[110][110],a[110],T=10;
int s[110];
int main(){
scanf("%d",&n);
memset(f,0x3f,sizeof(f));
for(int i=1;i<=n;++i){
scanf("%d",&a[i]);
f[i][i]=0;
s[i]=s[i-1]+a[i];
}
for(int L=2;L<=n;++L){
for(int i=1;i<=n;++i){
int j=i+L-1;
for(int k=i;k<=j;++k){
f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+s[j]-s[i-1]);
}
}
}
printf("%d",f[1][n]);
return 0;
}

回到 noi1995这道题,我们看到环便可直接加倍断环成链(套路),其余思路同上面相似

#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
int n,f[410][410],g[410][410],a[410];
int s[410],maxn,minn=1<<30;
int main(){
scanf("%d",&n);
memset(f,0x3f,sizeof(f));
for(int i=1;i<=n;++i){
scanf("%d",&a[i]);
f[i][i]=0;
s[i]=s[i-1]+a[i];
}
for(int i=1;i<=n;++i){
s[i+n]=s[i+n-1]+a[i];
f[i+n][i+n]=0;//这个初始化一定要记得
}
for(int L=2;L<=n;++L){
for(int i=1;i<=n+n;++i){//起点可以枚举到2n
int j=i+L-1;
if(j>n*2) break;//不符合
for(int k=i;k<j;++k){
f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+s[j]-s[i-1]);
g[i][j]=max(g[i][j],g[i][k]+g[k+1][j]+s[j]-s[i-1]);
}
}
}
for(int i=1;i<=n;++i){
maxn=max(maxn,g[i][i+n-1]);
minn=min(minn,f[i][i+n-1]);
}
printf("%d\n%d\n",minn,maxn);
return 0;
}

[NOI1995]石子合并 题解的更多相关文章

  1. 洛谷 P1880 [NOI1995]石子合并 题解

    P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...

  2. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  3. 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链

    区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...

  4. P1880 [NOI1995]石子合并 区间dp

    P1880 [NOI1995]石子合并 #include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f ...

  5. 【区间dp】- P1880 [NOI1995] 石子合并

    记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...

  6. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  7. [洛谷P1880][NOI1995]石子合并

    区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...

  8. NOI1995石子合并&多种石子合并

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  9. 区间DP初探 P1880 [NOI1995]石子合并

    https://www.luogu.org/problemnew/show/P1880 区间dp,顾名思义,是以区间为阶段的一种线性dp的拓展 状态常定义为$f[i][j]$,表示区间[i,j]的某种 ...

随机推荐

  1. S2:类的构造函数

    类的构造函数构造函数名与类名形同,不返回任何值,主要完成对象的初始化工作. (1)在构造函数中,可以给属性设置默认值(2)this只带当前对象 (3)如果不给属性赋初始值,则会以默认值来填充.(4)如 ...

  2. S3 介绍

    S3 是ceph rgw的基础,在学习RGW之前,先了解S3.

  3. PowerShell安装IIS

    Windows作web开发的同学,应该都会用到IIS服务器.比如在阿里云或是Azure上购买一台新的服务器,默认是没有安装IIS的(安装的镜像就带有IIS或是MySql的除外).届时需要安装IIS,安 ...

  4. 『深度应用』NLP机器翻译深度学习实战课程·零(基础概念)

    0.前言 深度学习用的有一年多了,最近开始NLP自然处理方面的研发.刚好趁着这个机会写一系列NLP机器翻译深度学习实战课程. 本系列课程将从原理讲解与数据处理深入到如何动手实践与应用部署,将包括以下内 ...

  5. yaml文件解析详解

    前言 yaml文件是什么?yaml文件其实也是一种配置文件类型,相比较ini,conf配置文件来说,更加的简洁,操作也更加简单,同时可以存放不同类型的数据,不会改变原有数据类型,所有的数据类型在读取时 ...

  6. java中的各种锁详细介绍

    转自:https://blog.csdn.net/axiaoboge/article/details/84335452 Java提供了种类丰富的锁,每种锁因其特性的不同,在适当的场景下能够展现出非常高 ...

  7. react中babel的使用

    在开发中经常会使用到es6语法,那么如何能够很好兼容es6写法呢

  8. 关于selenium自动化对窗口句柄的处理

    首先什么是句柄?句柄就是你点击一个页面,跳转了一个新的窗口.你要操作的元素可能在原窗口上,也有可能在新窗口上. 看下图句柄1 句柄2 由这2张图可知,url不一样,证明他们是处于不同的界面,我要操作的 ...

  9. Spring源码剖析开篇:什么是Spring?

    在讲源码之前,先让我们回顾一下一下Spring的基本概念,当然,在看源码之前你需要使用过spring或者spirngmvc. Spring是什么 Spring是一个开源的轻量级Java SE(Java ...

  10. Mybatis批处理(批量查询,更新,插入)

    mybatis批量查询 注意这里的 in 和   <trim prefix="(" suffix=")"> 以及 in ( )的三种方式的(例1(推 ...