P4139 上帝与集合的正确用法[欧拉定理]
题目描述
求
\]
简单题,指数循环节。
由于当\(b>=\psi(p)\)时,有
\]
显然这道题满足这个条件。
那当然是算\(\psi(p)\)然后\(2^{2^{2\cdots}}\)就可以变成
\]
啦。
往指数里头进行递归,每次算一个\(\psi(p')\)即可(显然有解)。
边界\(p=1\)时,显然式子\(=0\)。
参考代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 101
#define MOD 2520
#define E 1e-12
#define ll long long
using namespace std;
inline ll read()
{
int f=1,x=0;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';;c=getchar();}
return x*f;
}
inline int phi(int n)
{
int ans=n;
for(int i=2;i<=sqrt(n);++i){
if(n%i==0){
ans=ans/i*(i-1);
while(n%i==0) n/=i;
}
}
if(n>1) ans=ans/n*(n-1);
return ans;
}
int p;
inline ll qp(ll a,ll b,ll p)
{
ll ans=1;
for(;b;b>>=1){if(b&1)ans=(ans*a)%p;a=(a*a)%p;}
return ans%p;
}
inline int dfs(ll x)
{
if(x==1) return 0;
return qp(2,dfs(phi(x))+phi(x),x);
}
int main()
{
int t;
t=read();
while(t--){
p=read();
printf("%lld\n",dfs(p)%p);
}
return 0;
}
P4139 上帝与集合的正确用法[欧拉定理]的更多相关文章
- 洛谷 P4139 上帝与集合的正确用法 解题报告
P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...
- 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]
题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...
- 【BZOJ3884】上帝与集合的正确用法 [欧拉定理]
上帝与集合的正确用法 Time Limit: 5 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Input 第一行一个T ...
- 题解-洛谷P4139 上帝与集合的正确用法
上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p ...
- Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925
题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过 ...
- luogu P4139 上帝与集合的正确用法(扩展欧拉定理)
本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...
- 洛谷 P4139 上帝与集合的正确用法
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- 【洛谷】P4139 上帝与集合的正确用法
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天,上帝创造了一个世界的基本元素,称做“元”. 第二天,上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- P4139 上帝与集合的正确用法
本题是欧拉定理的应用.我这种蒟蒻当然不知道怎么证明啦! 那么我们就不证明了,来直接看结论: ab≡⎧⎩⎨⎪⎪ab%φ(p)abab%φ(p)+φ(p)gcd(a,p)=1gcd(a,p)≠1,b< ...
随机推荐
- nginx 移动端和pc端自动跳转
场景 项 域名 描述 pc端 www.one.com 用于pc端访问官网 移动端 m.one.com 用于移动端访问 现在的需求是这样,在pc端访问www.one.com和m.one.com都跳转到w ...
- php7.4 更新特性
PHP 7.4.0 Released! The PHP development team announces the immediate availability of PHP 7.4.0. This ...
- myeclipse An internal error occurred during: "Initialize metrics".
重新安装的myeclipse,在打开的时候弹出: An internal error occurred during: "Initialize metrics". com/g ...
- json_encode不自动转义斜杠“/”的方法
默认的情况之下使用 json_encode 对数组进行 json 格式的转换时候会自动的将数据中含有斜杠的字符串进行转义,如图 两种解决办法 其一,正则替换: $a = str_replace(& ...
- Emiya 家今天的饭
\(dp_{i,j,k}\)表示前\(i\)种烹饪方法,假设最多的是食材\(j\),食材\(j\)比其他食材多\(k\)次出现 其中\(i \in [1,n],j \in [1,m],k \in [- ...
- 关于JavaScript面向对象那些事
当你在使用手机的时候,你会发现,你并不懂得其中的原理就会操作了,其实这就是面向对象的思想.面向对象还有很多地方都会运用到.JavaScript也不例外,现在跟随我的脚步,来学习一下吧. 面向过程和面向 ...
- Hadoop 3.1.2 + Hive 3.1.1
一.安装Hadoop 1.1 版本说明 hadoop:3.1.2hive:3.1.1mysql:5.6.40 1.2 主机映射 添加IP与主机名的映射关系,在/etc/hosts文件里添加如下内容(所 ...
- Word 插入目录详细教程 -- 视频教程(6)
>> 视频教程链接:B站,速度快,清晰 更多关于插入目录的方法,参看:Word插入目录系列 未完 ...... 点击访问原文(进入后根据右侧标签,快速定位到本文)
- 23 Collection集合常用方法讲解
本文讲讲几个Collection的常用方法,这些方法在它的子类中也是很常用的,因此这里先拿出来单独讲解,以后它的子类中的这些方法就不再重复讲解. 几个常用方法: add() 添加一个元素 size() ...
- datanode启动异常(Incompatible clusterIDs)
问题: 正常start-all.sh无法启动datanode进程,但是./hadoop-daemon.sh start datanode又可以启动.过一会后datanode进程又莫名消失. 原理: 多 ...