题面

一句话题面:给你一些点,求这些点之中夹的最大的矩形周长。(考虑边界)

Solution

首先是一个结论,答案矩形一定经过\(x=\frac{w}{2}\)或经过\(y=\frac{h}{2}\),不然答案一定不优.

怎么说?因为答案一定\(\ge 2*max(h,w)+1\),这个可以通过左右|上下显然得出.

接下来我们考虑扫描线,对于从左往右的\(p_i.x\),令\(p_i.x\)为右边界,单调栈维护上下边界然后左边界直接每一次-就行了.

唯一的问题在于弹栈时的一些小操作,代码中都有注释.

Code

/*
mail: mleautomaton@foxmail.com
author: MLEAutoMaton
This Code is made by MLEAutoMaton
*/
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<iostream>
using namespace std;
#define ll long long
#define REP(a,b,c) for(int a=b;a<=c;a++)
#define re register
#define file(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
#define int ll
inline int gi(){
int f=1,sum=0;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0' && ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
return f*sum;
}
const int N=2000010;
int w,h,n;
struct node{
int x,y;
bool operator<(const node &b)const{return x<b.x || (x==b.x && y<b.y);}
}p[N];
typedef pair<int,int> pii;
#define mp make_pair
pii a[N],b[N];//stack
int mx[N],tag[N],ans;
void pushup(int o){mx[o]=max(mx[o<<1],mx[o<<1|1]);}
void pushdown(int o){
if(!tag[o])return;
tag[o<<1]+=tag[o];tag[o<<1|1]+=tag[o];
mx[o<<1]+=tag[o];mx[o<<1|1]+=tag[o];
tag[o]=0;
}
void modify(int o,int l,int r,int posl,int posr,int v){
if(posl<=l && r<=posr){tag[o]+=v;mx[o]+=v;return;}
pushdown(o);int mid=(l+r)>>1;
if(posl<=mid)modify(o<<1,l,mid,posl,posr,v);
if(mid<posr)modify(o<<1|1,mid+1,r,posl,posr,v);
pushup(o);
}
void work(){
memset(mx,0,sizeof(mx));memset(tag,0,sizeof(tag));
sort(p+1,p+n+1);int l=0,r=0;
for(int i=1;i<n;i++){
if(p[i].y<=h/2){
//单调栈维护
int lst=i-1;
while(l && p[i].y>a[l].second){
modify(1,1,n,a[l].first,lst,a[l].second-p[i].y);
lst=a[l--].first-1;
}
if(lst!=i-1)
a[++l]=mp(lst+1,p[i].y);
}
else{
//单调栈维护
int lst=i-1;
while(l && p[i].y<b[r].second){
modify(1,1,n,b[r].first,lst,p[i].y-b[r].second);
lst=b[r--].first-1;
}
if(lst!=i-1)b[++r]=mp(lst+1,p[i].y);
}
modify(1,1,n,i,i,h-p[i].x);//为了便于计算答案.
a[++l]=mp(i,0);b[++r]=mp(i,h);//为了减去上面或者下面.
ans=max(ans,mx[1]+p[i+1].x);//计算答案.
}
}
signed main(){
w=gi();h=gi();n=gi();
for(int i=1;i<=n;i++)p[i].x=gi(),p[i].y=gi();
p[++n]=(node){0,0};p[++n]=(node){w,h};
work();
for(int i=1;i<=n;i++)swap(p[i].x,p[i].y);swap(h,w);
work();
printf("%lld\n",ans*2);
return 0;
}

ARC063F すぬけ君の塗り絵 2 / Snuke's Coloring 2的更多相关文章

  1. すぬけ君の塗り絵 / Snuke's Coloring AtCoder - 2068 (思维,排序,贡献)

    Problem Statement We have a grid with H rows and W columns. At first, all cells were painted white. ...

  2. [arc063]F.すぬけ君の塗り絵2

    因为这题考虑可以观察一个性质,答案的下界为 \(2×(max(w,h)+1)\), 因为你至少可以空出一行或一列,因此这个矩形一定会经过 \(x=\frac{w}{2}\) 或 \(y=\frac{h ...

  3. [Arc063F] Snuke's Coloring 2

    [Arc063F] Snuke's Coloring 2 题目大意 给你一个网格图,一些点上有标记,求边长最大空白矩形. 试题分析 专门卡\(\log^2 n\)系列. 首先由题意我们可以找到答案的下 ...

  4. [arc063F]Snuke's Coloring 2-[线段树+观察]

    Description 传送门 Solution 我们先不考虑周长,只考虑长和宽. 依题意得答案下限为max(w+1,h+1),并且最后所得一定是个矩形(矩形内部无点). 好的,所以!!!答案一定会经 ...

  5. 【ARC 063F】Snuke's Coloring 2

    Description There is a rectangle in the xy-plane, with its lower left corner at (0,0) and its upper ...

  6. [ARC061E]すぬけ君の地下鉄旅行 / Snuke's Subway Trip

    题目大意:Snuke的城镇有地铁行驶,地铁线路图包括$N$个站点和$M$个地铁线.站点被从$1$到$N$的整数所标记,每条线路被一个公司所拥有,并且每个公司用彼此不同的整数来表示. 第$i$条线路($ ...

  7. Snuke's Coloring 2-1

    There is a rectangle in the xy-plane, with its lower left corner at (0,0) and its upper right corner ...

  8. AtCoder Regular Contest 063 F : Snuke’s Coloring 2 (线段树 + 单调栈)

    题意 小 \(\mathrm{C}\) 很喜欢二维染色问题,这天他拿来了一个 \(w × h\) 的二维平面 , 初始时均为白色 . 然后他在上面设置了 \(n\) 个关键点 \((X_i , Y_i ...

  9. 2018.09.22 atcoder Snuke's Coloring 2(线段树+单调栈)

    传送门 就是给出一个矩形,上面有一些点,让你找出一个周长最大的矩形,满足没有一个点在矩形中. 这个题很有意思. 考虑到答案一定会穿过中线. 于是我们可以把点分到中线两边. 先想想暴力如何解决. 显然就 ...

随机推荐

  1. JDBC简单增删改查实现(单表)

    0.准备工作 开发工具: MySQL数据库, intelliJ IDEA2017. 准备jar包: mysql-connector-java-5.1.28-bin.jar(其他均可) 1. 数据库数据 ...

  2. hadoop细节 -> 持续更新

    Hdfs: hdfs写流程: 客户端通过DistributedFileSystem请求namenode上传文件 Namenode进行检查,比如父路径   文件本身,是否允许上传 Namenode相应信 ...

  3. Flask第三方组件 之 Flask-Session

    原生session:交由客户端保管机制,安全性相对较差,优势是一点都不占用服务器空间 Flask-Session: 解决原生session的劣势 安装包 from flask import Flask ...

  4. 学习操作系统和Linux内核的新体会

    算起来是第三次看内核了吧,要从源码的细节中爬出来: (1)先拎清楚主要的数据结构,就把握住了骨架: (2)再看每个系统调用的功能的流程是如何围绕上述数据结构展开.举个栗子,块设备驱动层的主要数据结构有 ...

  5. python系列:一、Urllib库的基本使用

    开篇介绍: 因为我本人也是初学者,爬虫的例子大部分都是学习资料上面来的,只是自己手敲了一遍,同时加上自己的理解. 写得不好请多谅解,如果有错误之处请多赐教. 我本人的开发环境是vscode,pytho ...

  6. SQL SERVER升级2017

    SQL SERVER升级2017 摘要 本文只介绍了SQL SERVER升级到2017(在简单环境下),分为开始升级前的检查事项,升级操作步骤,升级后对新实例的配置. 检查事项 1.检查当前版本是否可 ...

  7. 【Spring Boot】Spring Boot之统一异常处理

    一.统一异常处理的作用 在web应用中,请求处理时,出现异常是非常常见的.所以当应用出现各类异常时,进行异常的统一捕获或者二次处理(比如空指针异常或sql异常正常是不能外抛)是非常必要的,然后右统一异 ...

  8. Arm Qt编译Qt例程出错 GLES3/gl3.h: No such file or directory 解决方法

    工作环境 PC:Ubuntu18.04QtCreator: 4.8.2交叉编译环境:野火imxull6开发板提供的 5-编译工具链->qt交叉编译工具 在之前博客配置成功的交叉编译环境,编译Qt ...

  9. centos下安装opencv

    根据项目需要,安装opencv并提供给开发使用,并且使用opencv提供python3的API接口.虽然不知道是个啥,还是简单了解下. opencv是什么? OpenCV的全称是Open Source ...

  10. 决策树算法原理--good blog

    转载于:http://www.cnblogs.com/pinard/p/6050306.html (楼主总结的很好,就拿来主义了,不顾以后还是多像楼主学习) 决策树算法在机器学习中算是很经典的一个算法 ...