Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n?

Example:

Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's: 1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

这道题实际上是 卡塔兰数 Catalan Numbe 的一个例子,如果对卡塔兰数不熟悉的童鞋可能真不太好做。话说其实我也是今天才知道的好嘛 -.-|||,为啥我以前都不知道捏?!为啥卡塔兰数不像斐波那契数那样人尽皆知呢,是我太孤陋寡闻么?!不过今天知道也不晚,不断的学习新的东西,这才是刷题的意义所在嘛! 好了,废话不多说了,赶紧回到题目上来吧。我们先来看当 n = 1 的情况,只能形成唯一的一棵二叉搜索树,n分别为 1,2,3 的情况如下所示:

                                            n = 

                                           n =
/ \ n =
\ / / / \ \ / / \ \

就跟斐波那契数列一样,我们把 n = 0 时赋为1,因为空树也算一种二叉搜索树,那么 n = 1 时的情况可以看做是其左子树个数乘以右子树的个数,左右子树都是空树,所以1乘1还是1。那么 n = 2 时,由于1和2都可以为根,分别算出来,再把它们加起来即可。n = 2 的情况可由下面式子算出(这里的 dp[i] 表示当有i个数字能组成的 BST 的个数):

dp[2] =  dp[0] * dp[1]   (1为根的情况,则左子树一定不存在,右子树可以有一个数字)

    + dp[1] * dp[0]    (2为根的情况,则左子树可以有一个数字,右子树一定不存在)

同理可写出 n = 3 的计算方法:

dp[3] =  dp[0] * dp[2]   (1为根的情况,则左子树一定不存在,右子树可以有两个数字)

    + dp[1] * dp[1]    (2为根的情况,则左右子树都可以各有一个数字)

     + dp[2] * dp[0]    (3为根的情况,则左子树可以有两个数字,右子树一定不存在)

由此可以得出卡塔兰数列的递推式为:

我们根据以上的分析,可以写出代码如下:

解法一:

class Solution {
public:
int numTrees(int n) {
vector<int> dp(n + );
dp[] = dp[] = ;
for (int i = ; i <= n; ++i) {
for (int j = ; j < i; ++j) {
dp[i] += dp[j] * dp[i - j - ];
}
}
return dp[n];
}
};

由卡特兰数的递推式还可以推导出其通项公式,即 C(2n,n)/(n+1),表示在 2n 个数字中任取n个数的方法再除以 n+1,只要你还没有忘记高中的排列组合的知识,就不难写出下面的代码,注意在相乘的时候为了防止整型数溢出,要将结果 res 定义为长整型,参见代码如下:

解法二:

class Solution {
public:
int numTrees(int n) {
long res = ;
for (int i = n + ; i <= * n; ++i) {
res = res * i / (i - n);
}
return res / (n + );
}
};

类似题目:

Unique Binary Search Trees II

Different Ways to Add Parentheses

参考资料:

https://leetcode.com/problems/unique-binary-search-trees/

https://leetcode.com/problems/unique-binary-search-trees/discuss/31666/DP-Solution-in-6-lines-with-explanation.-F(i-n)-G(i-1)-*-G(n-i)

https://leetcode.com/problems/unique-binary-search-trees/discuss/31671/A-very-simple-and-straight-ans-based-on-MathCatalan-Number-O(N)-timesO(1)space

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树的更多相关文章

  1. [LeetCode] 96. Unique Binary Search Trees 唯一二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  2. [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  3. [Leetcode] Unique binary search trees 唯一二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  4. [LeetCode] 96. Unique Binary Search Trees(给定一个数字n,有多少个唯一二叉搜索树) ☆☆☆

    [Leetcode] Unique binary search trees 唯一二叉搜索树 Unique Binary Search Trees leetcode java 描述 Given n, h ...

  5. leetcode 96. Unique Binary Search Trees 、95. Unique Binary Search Trees II 、241. Different Ways to Add Parentheses

    96. Unique Binary Search Trees https://www.cnblogs.com/grandyang/p/4299608.html 3由dp[1]*dp[1].dp[0]* ...

  6. 52. leetcode 96. Unique Binary Search Trees

    96. Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) tha ...

  7. Java [Leetcode 96]Unique Binary Search Trees

    题目描述: Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For ...

  8. leetcode 96 Unique Binary Search Trees ----- java

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  9. [leetcode]96. Unique Binary Search Trees给定节点形成不同BST的个数

    Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n? Input: ...

随机推荐

  1. C语言中的scanf与scanf_s 以及循环输入的问题解决

    Scanf 在标准C中,scanf提供了键盘输入功能. scanf函数是一个标准库函数,它的函数原型在头文件“stdio.h”中.与printf函数相同,C语言也允许在使用scanf函数之前不必包含s ...

  2. 怎么做web接口测试

        这就需要开发提供的接口文档了,接口文档和功能测试的需求说明书的功能是一样的.包括:接口说明.调用的url,请求方式(get or post),请求参数.参数类型.请求参数说明,返回结果说明.有 ...

  3. cmake打印shell

    cmake链接库失败时,可通过打印路径下对应的lib来定位问题 execute_process(COMMAND ls -lt ${CMAKE_CURRENT_SOURCE_DIR}/lib #执行sh ...

  4. 给 VS2017、VS2019 安装 ILSpy 插件

    关于 ILSpy is the open-source .NET assembly browser and decompiler. ILSpy 主页地址:https://github.com/icsh ...

  5. 云原生生态周报 Vol. 11 | K8s 1.16 早知道

    业界要闻 Pivotal 发布了完全基于 Kubernetes 的 Pivotal Application Service(PAS)预览版 这意味着 Pivotal 公司一直以来在持续运作的老牌 Pa ...

  6. Redhat6.6替换Centos Yum源

    1.删除当前系统自带的yum [root@reddhat6_155_201 ~]# rpm -qa |grep yum yum-rhn-plugin--.el6.noarch yum-utils--. ...

  7. Spring Cloud Hystrix 熔断器(五)

    序言 感觉hystrix很精彩,文档讲的也很好,这篇总结到哪里是哪里吧 写Hystrix之前,我们先简单的说说熔断器,和限流,这样你看完之后,就可以很容易理解Hystrix 熔断器 熔断器模式源于Ma ...

  8. AutoLayout的使用

    虽然苹果提供了AutoresizingMask的布局方式,这个方式局限性太大:只能解决父控件和子控件间的相对关系: 因此,推出了AutoLayout:苹果官方也是推荐开发者尽量使用autolayout ...

  9. MAC盗版软件下载网站黑名单

    上面有大量的开源软件或者免费软件,拒绝盗版从我做起, 下面被删除的网站提供大量破解软件下载,欢迎大家监督它们. 玩转苹果:http://www.ifunmac.com Mac软件下载站:http:// ...

  10. XGBoost和LightGBM的参数以及调参

    一.XGBoost参数解释 XGBoost的参数一共分为三类: 通用参数:宏观函数控制. Booster参数:控制每一步的booster(tree/regression).booster参数一般可以调 ...