[LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树
Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n?
Example:
Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's: 1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
这道题实际上是 卡塔兰数 Catalan Numbe 的一个例子,如果对卡塔兰数不熟悉的童鞋可能真不太好做。话说其实我也是今天才知道的好嘛 -.-|||,为啥我以前都不知道捏?!为啥卡塔兰数不像斐波那契数那样人尽皆知呢,是我太孤陋寡闻么?!不过今天知道也不晚,不断的学习新的东西,这才是刷题的意义所在嘛! 好了,废话不多说了,赶紧回到题目上来吧。我们先来看当 n = 1 的情况,只能形成唯一的一棵二叉搜索树,n分别为 1,2,3 的情况如下所示:
n =
n =
/ \
n =
\ / / / \ \
/ / \ \
就跟斐波那契数列一样,我们把 n = 0 时赋为1,因为空树也算一种二叉搜索树,那么 n = 1 时的情况可以看做是其左子树个数乘以右子树的个数,左右子树都是空树,所以1乘1还是1。那么 n = 2 时,由于1和2都可以为根,分别算出来,再把它们加起来即可。n = 2 的情况可由下面式子算出(这里的 dp[i] 表示当有i个数字能组成的 BST 的个数):
dp[2] = dp[0] * dp[1] (1为根的情况,则左子树一定不存在,右子树可以有一个数字)
+ dp[1] * dp[0] (2为根的情况,则左子树可以有一个数字,右子树一定不存在)
同理可写出 n = 3 的计算方法:
dp[3] = dp[0] * dp[2] (1为根的情况,则左子树一定不存在,右子树可以有两个数字)
+ dp[1] * dp[1] (2为根的情况,则左右子树都可以各有一个数字)
+ dp[2] * dp[0] (3为根的情况,则左子树可以有两个数字,右子树一定不存在)
由此可以得出卡塔兰数列的递推式为:

我们根据以上的分析,可以写出代码如下:
解法一:
class Solution {
public:
int numTrees(int n) {
vector<int> dp(n + );
dp[] = dp[] = ;
for (int i = ; i <= n; ++i) {
for (int j = ; j < i; ++j) {
dp[i] += dp[j] * dp[i - j - ];
}
}
return dp[n];
}
};
由卡特兰数的递推式还可以推导出其通项公式,即 C(2n,n)/(n+1),表示在 2n 个数字中任取n个数的方法再除以 n+1,只要你还没有忘记高中的排列组合的知识,就不难写出下面的代码,注意在相乘的时候为了防止整型数溢出,要将结果 res 定义为长整型,参见代码如下:
解法二:
class Solution {
public:
int numTrees(int n) {
long res = ;
for (int i = n + ; i <= * n; ++i) {
res = res * i / (i - n);
}
return res / (n + );
}
};
类似题目:
Different Ways to Add Parentheses
参考资料:
https://leetcode.com/problems/unique-binary-search-trees/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树的更多相关文章
- [LeetCode] 96. Unique Binary Search Trees 唯一二叉搜索树
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- [Leetcode] Unique binary search trees 唯一二叉搜索树
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- [LeetCode] 96. Unique Binary Search Trees(给定一个数字n,有多少个唯一二叉搜索树) ☆☆☆
[Leetcode] Unique binary search trees 唯一二叉搜索树 Unique Binary Search Trees leetcode java 描述 Given n, h ...
- leetcode 96. Unique Binary Search Trees 、95. Unique Binary Search Trees II 、241. Different Ways to Add Parentheses
96. Unique Binary Search Trees https://www.cnblogs.com/grandyang/p/4299608.html 3由dp[1]*dp[1].dp[0]* ...
- 52. leetcode 96. Unique Binary Search Trees
96. Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) tha ...
- Java [Leetcode 96]Unique Binary Search Trees
题目描述: Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For ...
- leetcode 96 Unique Binary Search Trees ----- java
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- [leetcode]96. Unique Binary Search Trees给定节点形成不同BST的个数
Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n? Input: ...
随机推荐
- 【Oracle】RMAN duplicate复制库
基础环境: 172.17.4.60 操作系统:Linux 6.4 数据库:Oracle11gR2 (源数据库) 172.17.4.61 操作系统:Linux 6.4 数据库:Oracle11gR2 ( ...
- MySQL基础(二)(约束以及修改数据表)
一,约束以及修改数据表 约束的作用?1.约束保证数据的完整性.一致性:2.约束分为表级约束.列级约束:3.约束类型包括:NOT NULL(非空约束).PRIMARY KEY(主键约束).UNIQUE ...
- Spring循环依赖原因及如何解决
浅谈Spring解决循环依赖的三种方式 SpringBoot构造器注入循环依赖及解决 原文:https://www.baeldung.com/circular-dependencies-in-spri ...
- mongoose模糊查询
注:nodejs服务器时候遇到了这样一个bug,就是mongoose模糊查询时候,我需要查询的数据时自定义id_(number类型)以及用户名(string类型). bug如下: nodejs服务器报 ...
- 3 测试使用和LogCat日志
测试概念: 1.根据是否知道源代码分: 黑盒测试:功能测试 白盒测试:编写代码进行测试 2.测试力度划分: 方法测试: 单元测试: 集成测试: 系统测试: 3.暴力程度划分: 压力测试: 冒烟测试:压 ...
- java引用的强制转型
在java的面向对象的特性里,父类的引用可以指向子类的实例对象.但是,如果一个引用b(b本身指向了一个对象)想赋值给引用a,b不是a的类型且不是a的子类类型,那么就需要强制转换,并有失败的可能性,这个 ...
- LINUX内核CPU负载均衡机制【转】
转自:http://oenhan.com/cpu-load-balance 还是神奇的进程调度问题引发的,参看Linux进程组调度机制分析,组调度机制是看清楚了,发现在重启过程中,很多内核调用栈阻塞在 ...
- Unity检视面板的继承方法研究 (一)
对于检视面板 Inspector 的面板继承方式对项目来说是很有必要的, 比如一个基类, 写了一个很好看的检视面板[CustomEditor(typeof(XXX))], 可是所有子类的面板无法直接继 ...
- 目标检测论文解读1——Rich feature hierarchies for accurate object detection and semantic segmentation
背景 在2012 Imagenet LSVRC比赛中,Alexnet以15.3%的top-5 错误率轻松拔得头筹(第二名top-5错误率为26.2%).由此,ConvNet的潜力受到广泛认可,一炮而红 ...
- 201871010109-胡欢欢《面向对象程序设计(java)》第八周学习总结
博文正文开头:(2分) 项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https://www.cnblogs.com/ ...