Description:

一开始有N个小根堆,每个堆包含且仅包含一个数。接下来需要支持两种操作:

操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或第y个数已经被删除第x和第y个数在用一个堆内,则无视此操作)

操作2: 2 x 输出第x个数所在的堆最小数,并将其删除(若第x个数已经被删除,则输出-1并无视删除操作)

Hint:

对于100%的数据:N<=100000,M<=100000

Solution:

模板题,详见代码

#include<bits/stdc++.h>
using namespace std;
const int mxn=1e5+5;
int n,m;
int ch[mxn][2],vis[mxn],val[mxn],dis[mxn]={-1},fa[mxn],f[mxn]; //勿忘记初始化dis[0]=-1 int find(int x)
{
return fa[x]==x?x:fa[x]=find(fa[x]);
} int merge(int x,int y)
{
if(!(x&&y)) return x+y;
if(val[x]>val[y]||(val[x]==val[y]&&x>y))
swap(x,y);
ch[x][1]=merge(ch[x][1],y); fa[ch[x][1]]=x;
if(dis[ch[x][0]]<dis[ch[x][1]])
swap(ch[x][0],ch[x][1]);
dis[x]=dis[ch[x][1]]+1;
return x;
} void del(int x)
{
vis[x]=1;
fa[ch[x][0]]=ch[x][0],fa[ch[x][1]]=ch[x][1];
fa[x]=merge(ch[x][0],ch[x][1]); //这里有个细节,由于路径压缩的存在,原树中的点可能指向删除节点,故需更新删除节点的fa[]
} int main()
{
scanf("%d%d",&n,&m); int opt,x,y;
for(int i=1;i<=n;++i) fa[i]=i;
for(int i=1;i<=n;++i) scanf("%d",&val[i]);
for(int i=1;i<=m;++i) {
scanf("%d",&opt);
if(opt==1) {
scanf("%d%d",&x,&y);
if(vis[x]||vis[y]) continue ; //切记判断两点存在
x=find(x),y=find(y);
if(x!=y) //判断是否在一个堆
merge(x,y);
}
else {
scanf("%d",&x);
printf("%d\n",vis[x]==0?val[x=find(x)]:-1); //判断是否存在
if(!vis[x]) del(x);
}
} return 0;
}

[模板][P3377]左偏树的更多相关文章

  1. 洛谷 P3377 【模板】左偏树(可并堆)

    洛谷 P3377 [模板]左偏树(可并堆) 题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或 ...

  2. 模板 可并堆【洛谷P3377】 【模板】左偏树(可并堆)

    P3377 [模板]左偏树(可并堆) 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或第y个数已经被删 ...

  3. 洛谷P3377 【模板】左偏树(可并堆) 题解

    作者:zifeiy 标签:左偏树 这篇随笔需要你在之前掌握 堆 和 二叉树 的相关知识点. 堆支持在 \(O(\log n)\) 的时间内进行插入元素.查询最值和删除最值的操作.在这里,如果最值是最小 ...

  4. 2021.08.01 P3377 左偏树模板

    2021.08.01 P3377 左偏树模板 P3377 [模板]左偏树(可并堆) - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) #include<iostream> ...

  5. 洛谷 - P3377 - 【模板】左偏树(可并堆) - 左偏树 - 并查集

    https://www.luogu.org/problemnew/show/P3377 左偏树+并查集 左偏树维护两个可合并的堆,并查集维护两个堆元素合并后可以找到正确的树根. 关键点在于删除一个堆的 ...

  6. luogu【P3377】 【模板】左偏树

    左偏树 顾名思义 向左偏的树 (原题入口) 它有啥子用呢??? 当然是进行堆的合并啦2333普通堆的合并其实是有点慢的(用优先队列的话 只能 一个pop 一个push 来操作 复杂度就是O(n log ...

  7. [洛谷P3377]【模板】左偏树(可并堆)

    题目大意:有$n$个数,$m$个操作: $1\;x\;y:$把第$x$个数和第$y$个数所在的小根堆合并 $2\;x:$输出第$x$个数所在的堆的最小值 题解:左偏树,保证每个的左儿子的距离大于右儿子 ...

  8. 题解 P3377 【【模板】左偏树(可并堆)】

    所谓的左偏树,是一种可并堆的实现. 这种数据结构能够支持高效的堆合并,但是不支持查询节点等操作,因此不同于平衡树,它的结构是不平衡的. 左偏树满足如下两条基本性质: 1. 堆的性质 这也就是说左偏树每 ...

  9. P3377 【模板】左偏树(可并堆) 左偏树浅谈

    因为也是昨天刚接触左偏树,从头理解,如有不慎之处,跪请指教. 左偏树: 什 么是(fzy说)左偏树啊? 前置知识: 左偏树中dist:表示到右叶点(就是一直往右下找,最后一个)的距离,特别的,无右节点 ...

随机推荐

  1. Python3学习笔记14-迭代与列表生成式

    迭代 如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration) 在Python中,迭代是通过for...in来完成的. d = ...

  2. bzoj2588 Spoj10628. count on a tree

    题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个 ...

  3. MFC 使用用指定USB设备串口

    在做设备串口通讯时,往往需要自动连接到想要连接的usb转串口设备上. #include <Setupapi.h> int CMFCApplication1Dlg::FindUSBCOM() ...

  4. Expm 1_3 数组中逆序对个数问题

    有一个数的序列A[1].A[2] .A[3] .…… .A[n],若i<j,并且A[i]>A[j],则称A[i]与A[j]构成了一个逆序对,设计算法求数列A中逆序对的个数. package ...

  5. Java中强、软、弱、虚引用

    1.强引用(StrongReference) 强引用是使用最普遍的引用.如果一个对象具有强引用,那垃圾回收器绝不会回收它.当内存空间不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使 ...

  6. js----jquery和js的区别

    1.在htlm页面中引入jquery文件后,想获取<input>输入框的数据 <input type='text' id = 'username>' var text = $( ...

  7. python+selenium九:ddt数据驱动

    第一种,测试数据放在Excel里面 test_Login: import unittestimport timeimport ddtimport osfrom selenium import webd ...

  8. MySQL学习笔记:select语句性能优化建议

    关于SQL中select性能优化有以下建议,仅当笔记记录. 1.检查索引:where.join部分字段都该加上索引 2.限制工作数据集的大小:利用where字句过滤 3.只选择需要的字段:减少IO开销 ...

  9. .NetCore下使用Prometheus实现系统监控和警报 (六)进阶Grafana集成自定义收集指标

    Prometheus中包含了很多收集指标,那么我们怎来在Grafana中来使用呢? 接下来我们还是以之前自定义的来演示如图:我们在Prometheus中已经可以看到这个之前我们自定义的类型了 关于Gr ...

  10. BZOJ4994 [Usaco2017 Feb]Why Did the Cow Cross the Road III 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4994 题意概括 给定长度为2N的序列,1~N各处现过2次,i第一次出现位置记为ai,第二次记为bi ...